噪声类型 | 图像 | 滤波器 | 噪声方差噪声密度 | 迭代次数 | PSNR.N | PSNR.D | CDE | RFSIM |
高斯噪声 | Lena | MSF | 10 | 10 | 28.1111 | 32.5290 | 12.3499 | 0.6873 |
20 | 20 | 22.1472 | 28.8819 | 12.3575 | 0.5065 | |||
MCF | 10 | 10 | 28.1111 | 31.2486 | 12.3128 | 0.6063 | ||
20 | 20 | 22.1472 | 28.7087 | 12.3020 | 0.4644 | |||
House | MSF | 5 | 7 | 34.1560 | 35.9549 | 11.0543 | 0.6838 | |
10 | 10 | 28.1072 | 32.4532 | 11.0582 | 0.5043 | |||
20 | 20 | 22.1129 | 28.5565 | 11.0600 | 0.3117 | |||
MCF | 5 | 7 | 34.1560 | 33.1901 | 11.0436 | 0.5879 | ||
10 | 10 | 28.1072 | 31.1816 | 11.0491 | 0.4750 | |||
20 | 20 | 22.1129 | 28.3753 | 11.0487 | 0.3315 | |||
椒盐噪声 | peppers | MSF | 0.05 | 4 | 18.2659 | 34.3401 | 12.3245 | 0.8842 |
0.10 | 9 | 15.3176 | 32.0921 | 12.3229 | 0.8271 | |||
MCF | 0.05 | 4 | 18.2659 | 30.1227 | 12.3089 | 0.7940 | ||
0.10 | 9 | 15.3176 | 30.5087 | 12.2877 | 0.7083 |

Citation: Manli WANG, Zijian TIAN, Yuangang ZHANG. Minimal Surface Filter Driven by Curvature Difference[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190216

曲率差分驱动的极小曲面滤波器
English
Minimal Surface Filter Driven by Curvature Difference
-
Key words:
- Image denoising
- / Filter
- / Energy functional
- / Mean curvature
- / Minimal surface
-
-
[1]
RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F
-
[2]
DING Meng, HUANG Tingzhu, WANG Si, et al. Total variation with overlapping group sparsity for deblurring images under Cauchy noise[J]. Applied Mathematics and Computation, 2019, 341: 128–147. doi: 10.1016/j.amc.2018.08.014
-
[3]
SHEN Zhengwei and CHENG Lishuang. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions[J]. Journal of Electronic Imaging, 2017, 26(5): 053005. doi: 10.1117/1.JEI.26.5.053005
-
[4]
郭从洲, 秦志远, 时文俊. 基于能量泛函和视觉特性的全变分图像降噪模型[J]. 中国图象图形学报, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904
GUO Congzhou, QIN Zhiyuan, and SHI Wenjun. TV image denoising model based on energy functionals and HVS[J]. Journal of Image and Graphics, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904 -
[5]
LIU Zexian, LIU Hongwei, and WANG Xiping. Accelerated augmented Lagrangian method for total variation minimization[J]. Computational and Applied Mathematics, 2019, 38(2): 50. doi: 10.1007/s40314-019-0787-7
-
[6]
GAO Tianling, WANG Xiaofei, LIU Qiang, et al. A fixed-point algorithm for second-order total variation models in image denoising[J]. Computational and Applied Mathematics, 2019, 38(1): 8. doi: 10.1007/s40314-019-0763-2
-
[7]
ZOU Jian, SHEN Marui, ZHANG Ya, et al. Total variation denoising with non-convex regularizers[J]. IEEE Access, 2019, 7: 4422–4431. doi: 10.1109/ACCESS.2018.2888944
-
[8]
BEN SAID A, HADJIDJ R, and FOUFOU S. Total variation for image denoising based on a novel smart edge detector: An application to medical images[J]. Journal of Mathematical Imaging and Vision, 2019, 61(1): 106–121. doi: 10.1007/s10851-018-0829-6
-
[9]
LI Mingqiang, HAN Congying, WANG Ruxin, et al. Shrinking gradient descent algorithms for total variation regularized image denoising[J]. Computational Optimization and Applications, 2017, 68(3): 643–660. doi: 10.1007/s10589-017-9931-8
-
[10]
王宇, 汤心溢, 罗易雪, 等. 自适应Split Bregman迭代的红外图像降噪算法[J]. 红外与毫米波学报, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546
WANG Yu, TANG Xinyi, LUO Yixue, et al. IR image denoising algorithm based on adaptive split bregman method[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546 -
[11]
FIRSOV D and LUI S H. Domain decomposition methods in image denoising using Gaussian curvature[J]. Journal of Computational and Applied Mathematics, 2006, 193(2): 460–473. doi: 10.1016/j.cam.2005.05.032
-
[12]
JIDESH P and GEORGE S. Gauss curvature-driven image inpainting for image reconstruction[J]. Journal of the Chinese Institute of Engineers, 2014, 37(1): 122–133. doi: 10.1080/02533839.2012.751332
-
[13]
ZHU Wei and CHAN T. Image denoising using mean curvature of image surface[J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 1–32. doi: 10.1137/110822268
-
[14]
GONG Yuanhao. Spectrally regularized surfaces[D]. [Ph.D dissertation], ETH-Zürich, 2015: 127–165. doi: 10.3929/ethz-a-010438292.
-
[15]
GONG Yuanhao and SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786–1798. doi: 10.1109/tip.2017.2658954
-
[16]
BAI Yunjiao, ZHANG Quan, HONG Shangguan, et al. Patch similarity modulus and difference curvature based fourth-order partial differential equation for image denoising[J]. Mathematical Problems in Engineering, 2015, 2015: 636295. doi: 10.1155/2015/636295
-
[17]
YIN Xuehui and ZHOU Shangbo. Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015: 930984. doi: 10.1155/2015/930984
-
[18]
DONOHO D L and JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425–455. doi: 10.1093/biomet/81.3.425
-
[1]
-
表 1 降噪图像的评价指标数据
-