
Citation: Tao CAO, Youjiang LIU, Chun YANG, Jie ZHOU. Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190275

高效宽带包络跟踪系统电路性能优化及非线性行为校正
English
Circuits Optimization and System Linearization for High Efficiency and Wideband Envelope Tracking Architecture
-
-
[1]
BALTEANU F, MODI H, ZHU Yu, et al. Envelope tracking system for high power applications in uplink 4G/5G LTE advanced[C]. Proceedings of 2018 Asia-Pacific Microwave Conference, Kyoto, Japan, 2018: 863–865. doi: 10.23919/APMC.2018.8617571.
-
[2]
SHI Weimin, HE Songbai, ZHU Xiaoyu, et al. Broadband continuous-mode doherty power amplifiers with noninfinity peaking impedance[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1034–1046. doi: 10.1109/TMTT.2017.2749224
-
[3]
HOLZER K D, YUAN Wen, and WALLING J S. Wideband techniques for outphasing power amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(9): 2715–2725. doi: 10.1109/TCSI.2018.2800041
-
[4]
LIU Youjiang, YOO C S, FAIRBANKS J, et al. A 53% PAE envelope tracking GaN power amplifier for 20 MHz bandwidth LTE signals at 880 MHz[C]. Proceedings of 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Austin, USA, 2016: 30–32. doi: 10.1109/PAWR.2016.7440155.
-
[5]
HASSAN M, ASBECK P M, and LARSON L E. A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20 MHz LTE envelope tracking RF power amplifier[C]. Proceedings of 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, USA, 2013: 366–368. doi: 10.1109/ISSCC.2013.6487772.
-
[6]
KOMATSUZAKI Y, LANFRANCO S, KOLMONEN T, et al. A high efficiency 3.6–4.0 GHz envelope-tracking power amplifier using GaN soft-switching buck-converter[C]. Proceedings of 2018 IEEE/MTT-S International Microwave Symposium, Philadelphia, USA, 2018: 465–468. doi: 10.1109/MWSYM.2018.8439225.
-
[7]
HASSAN M, LARSON L E, LEUNG V W, et al. A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE mobile terminal applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1321–1330. doi: 10.1109/TMTT.2012.2187537
-
[8]
KIM J, KIM D, CHO Y, et al. Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(6): 1648–1657. doi: 10.1109/TCSI.2015.2423771
-
[9]
WANG Yazhou, JIN Qian, and RUAN Xinbo. Optimized design of the multilevel converter in series-form switch-linear hybrid envelope-tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5451–5460. doi: 10.1109/TIE.2016.2565459
-
[10]
JIN Qian, RUAN Xinbo, REN Xiaoyong, et al. Step-wave switched capacitor converter for compact design of envelope tracking power supply[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9587–9591. doi: 10.1109/TIE.2017.2716900
-
[11]
LENG Yang, RUAN Xinbo, JIN Qian, et al. High-efficiency high-bandwidth switch-linear hybrid envelope-tracking power supply with slew rate split-band method[C]. Proceedings of 2017 IEEE Energy Conversion Congress and Exposition, Cincinnati, USA, 2017: 2246–2252. doi: 10.1109/ECCE.2017.8096438.
-
[12]
JING Yue and BAKKALOGLU B. A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3245–3256. doi: 10.1109/TMTT.2017.2678476
-
[13]
XI Huan, CAO Juan, LIU Ning, et al. High bandwidth envelope tracking power supply with pulse edge independent distribution method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 5907–5917. doi: 10.1109/TIE.2018.2874580
-
[14]
KIM D, KANG D, CHOI J, et al. Optimization for envelope shaped operation of envelope tracking power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1787–1795. doi: 10.1109/TMTT.2011.2140124
-
[15]
LEACH W M. Feedforward compensation of the amplifier output stage for improved stability with capacitive loads[J]. IEEE Transactions on Consumer Electronics, 1988, 34(2): 334–338. doi: 10.1109/30.2950
-
[16]
MKADEM F, ISLAM A, and BOUMAIZA S. Multi-band complexity reduced generalized-memory-polynomial power-amplifier digital pre-distortion[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1763–1774. doi: 10.1109/TMTT.2016.2561279
-
[1]
-
表 1 本文EA电路测试结果与近年文献结果对比
表 2 ET系统测试结果
信号带宽(MHz) DPD 功率(dBm) 增益(dB) 效率(%) ACPR1(dBc) EVM(%) 5 无 34.4 11.0 61.3 -26.7 7.50 5 有 34.4 11.0 60.8 -49.7 0.32 10 无 34.6 11.1 56.7 -26.8 8.10 10 有 34.2 10.7 53.7 -46.3 0.60 20 无 34.3 11.3 46.4 -26.4 8.90 20 有 34.1 11.1 44.1 -46.0 0.67 -