高级搜索

基于签到活跃度和时空概率模型的自适应兴趣点推荐方法

司亚利 张付志 刘文远

引用本文: 司亚利, 张付志, 刘文远. 基于签到活跃度和时空概率模型的自适应兴趣点推荐方法[J]. 电子与信息学报, 2020, 42(3): 678-686. doi: 10.11999/JEIT190287 shu
Citation:  Yali SI, Fuzhi ZHANG, Wenyuan LIU. An Adaptive Point-Of-Interest Recommendation Method Based on Check-in Activity and Temporal-Spatial Probabilistic Models[J]. Journal of Electronics and Information Technology, 2020, 42(3): 678-686. doi: 10.11999/JEIT190287 shu

基于签到活跃度和时空概率模型的自适应兴趣点推荐方法

    作者简介: 司亚利: 女,1981年生,副教授,研究方向为兴趣点推荐系统;
    张付志: 男,1964年生,教授,研究方向为推荐系统;
    刘文远: 男,1968年生,教授,研究方向为物联网系统
    通讯作者: 张付志,xjzfz@ysu.edu.cn
  • 基金项目: 国家自然科学基金(61379116, 61772452),河北省自然科学基金(F2015203046, F2015501105)

摘要: 针对现有兴趣点(POI)推荐算法对不同签到特征的用户缺乏自适应性问题,该文提出一种基于用户签到活跃度(UCA)特征和时空(TS)概率模型的自适应兴趣点推荐方法UCA-TS。利用概率统计分析方法提取用户签到的活跃度特征,给出一种用户不活跃和活跃的隶属度计算方法。在此基础上,分别采用结合时间因素的1维幂律函数和2维高斯核密度估计来计算不活跃和活跃特征的概率值,同时融入兴趣点流行度来进行推荐。该方法能自适应用户的签到特征,并能更准确体现用户签到的时间和空间偏好。实验结果表明,该方法能够有效提高推荐精度和召回率。

English

    1. [1]

      SI Yali, ZHANG Fuzhi, and LIU Wenyuan. CTF-ARA: An adaptive method for POI recommendation based on check-in and temporal features[J]. Knowledge-Based Systems, 2017, 128: 59–70. doi: 10.1016/j.knosys.2017.04.013

    2. [2]

      YU Yonghong and CHEN Xingguo. A survey of point-of-interest recommendation in location-based social networks[C]. Trajectory-Based Behavior Analytics: Papers from the 2015 AAAI Workshop, Palo Alto, USA, 2015: 53–60.

    3. [3]

      ZHANG Jiadong and CHOW C Y. CoRe: Exploiting the personalized influence of two-dimensional geographic coordinates for location recommendations[J]. Information Sciences, 2015, 293: 163–181. doi: 10.1016/j.ins.2014.09.014

    4. [4]

      ZHANG Jiadong and CHOW C Y. Point-of-interest recommendations in location-based social networks[J]. SIGSPATIAL Special, 2015, 7(3): 26–33. doi: 10.1145/2876480.2876486

    5. [5]

      YUAN Quan, CONG Gao, MA Zongyang, et al. Time-aware point-of-interest recommendation[C]. The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013: 363−372. doi: 10.1145/2484028.2484030.

    6. [6]

      ZHANG Jiadong and CHOW C Y. TICRec: A probabilistic framework to utilize temporal influence correlations for time-aware location recommendations[J]. IEEE Transactions on Services Computing, 2016, 9(4): 633–646. doi: 10.1109/TSC.2015.2413783

    7. [7]

      LI Huayu, GE Yong, HONG Richang, et al. Point-of-Interest recommendations: Learning potential check-ins from Friends[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 975–984. doi: 10.1145/2939672.2939767.

    8. [8]

      LIU Bin and XIONG Hui. Point-of-interest recommendation in location based social networks with topic and location awareness[C]. The 2013 SIAM International Conference on Data Mining, Austin, USA, 2013: 396–404. doi: 10.1137/1.9781611972832.44.

    9. [9]

      ZHAO Shenglin, ZHAO Tong, YANG Haiqin, et al. STELLAR: Spatial-temporal latent ranking for successive point-of-interest recommendation[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 315–321. doi: 10.1007/978-981-13-1349-3_5.

    10. [10]

      任星怡, 宋美娜, 宋俊德. 基于位置社交网络的上下文感知的兴趣点推荐[J]. 计算机学报, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824
      REN Xingyi, SONG Meina, and SONG Junde. Context-aware point-of-interest recommendation in location-based social networks[J]. Chinese Journal of Computers, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824

    11. [11]

      YIN Hongzhi, CUI Bin, CHEN Ling, et al. Modeling location-based user rating profiles for personalized recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3): 1–41. doi: 10.1145/2663356

    12. [12]

      LIU Bin, XIONG Hui, PAPADIMITRIOU S, et al. A general geographical probabilistic factor model for point of interest recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1167–1179. doi: 10.1109/TKDE.2014.2362525

    13. [13]

      LIU Yiding, PHAM T A N, CONG Gao, et al. An experimental evaluation of point-of-interest recommendation in location-based social networks[J]. Proceedings of the VLDB Endowment, 2017, 10(10): 1010–1021. doi: 10.14778/3115404.3115407

    14. [14]

      YUAN Quan, CONG Gao, and SUN Aixin. Graph-based point-of-interest recommendation with geographical and temporal influences[C]. The 23rd ACM International Conference on Information and Knowledge Management, Shanghai, China, 2014: 659–668. doi: 10.1145/2661829.2661983.

    15. [15]

      冯浩, 黄坤, 李晶, 等. 基于深度学习的混合兴趣点推荐算法[J]. 电子与信息学报, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458
      FENG Hao, HUANG Kun, LI Jing, et al. Hybrid point of interest recommendation algorithm based on deep learning[J]. Journal of Electronics &Information Technology, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458

    16. [16]

      ZHENG Haitao, ZHOU Yingmin, LIANG Nan, et al. Exploiting user mobility for time-aware POI recommendation in social networks[J]. IEEE Access, 2017, 99: 1–14. doi: 10.1109/ACCESS.2017.2764074

    17. [17]

      LIU Shudong and WANG Lei. A self-adaptive point-of-interest recommendation algorithm based on a multi-order Markov model[J]. Future Generation Computer Systems, 2018, 89: 506–514. doi: 10.1016/j.future.2018.07.008

    1. [1]

      刘文斌, 王兵, 方刚, 石晓龙, 许鹏. 基于中值的JS散度可变剪接差异分析研究. 电子与信息学报, 2020, 42(6): 1392-1400.

    2. [2]

      刘文斌, 吴倩, 杜玉改, 方刚, 石晓龙, 许鹏. 基于个性化网络标志物的药物推荐方法研究. 电子与信息学报, 2020, 42(6): 1340-1347.

    3. [3]

      马彬, 王梦雪, 谢显中. 超密集异构无线网络中基于位置预测的切换算法. 电子与信息学报, 2020, 42(0): 1-9.

    4. [4]

      宋人杰, 张元东. 基于感兴趣区域的高性能视频编码帧内预测优化算法. 电子与信息学报, 2020, 42(0): 1-7.

    5. [5]

      李攀攀, 谢正霞, 周志刚, 乐光学, 郑仕链, 杨小牛. 基于Hilbert填充曲线的海洋无线传感网源节点位置隐私保护方法. 电子与信息学报, 2020, 42(6): 1510-1518.

    6. [6]

      王一宾, 裴根生, 程玉胜. 基于标记密度分类间隔面的组类属属性学习. 电子与信息学报, 2020, 42(5): 1179-1187.

    7. [7]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法. 电子与信息学报, 2020, 42(0): 1-8.

    8. [8]

      李佩丽, 徐海霞. 区块链用户匿名与可追踪技术. 电子与信息学报, 2020, 42(5): 1061-1067.

    9. [9]

      张玉磊, 文龙, 王浩浩, 张永洁, 王彩芬. 多用户环境下无证书认证可搜索加密方案. 电子与信息学报, 2020, 42(5): 1094-1101.

    10. [10]

      贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-9.

    11. [11]

      贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-8.

    12. [12]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    13. [13]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    14. [14]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报, 2020, 42(0): 1-8.

    15. [15]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报, 2020, 41(0): 1-9.

    16. [16]

      杨书新, 梁文, 朱凯丽. 基于三级邻居的复杂网络节点影响力度量方法. 电子与信息学报, 2020, 42(5): 1140-1148.

    17. [17]

      张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移. 电子与信息学报, 2020, 42(5): 1216-1222.

    18. [18]

      刘文斌, 陈杰, 方刚, 石晓龙, 许鹏. 基于药物互作网络的协同与拮抗预测研究. 电子与信息学报, 2020, 42(6): 1420-1427.

    19. [19]

      刘小燕, 李照明, 段嘉旭, 项天远. 基于卷积神经网络的PCB板色环电阻检测与定位方法. 电子与信息学报, 2020, 41(0): 1-10.

    20. [20]

      邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配. 电子与信息学报, 2020, 41(0): 1-8.

  • 图 1  两个数据集中UCN和相应用户数量统计图

    图 2  用户签到数量的概率质量函数图

    图 3  k对精度和召回率的影响

    图 4  1维和2维模型对Foursquare数据集中不活跃用户和活跃用户的精度和召回率

    图 5  兴趣点推荐算法在两个数据集上的精度和召回率

    表 1  自适应兴趣点推荐算法(UCA-TS)

     输入:签到数据集UCall,推荐的目标用户u,时间槽t;(11) for each lL-Lu do
     输出:推荐的top-n兴趣点(12)  p1(l|Lu,t)←1; p2(l|Lu,t)←0;
     (1) 使用式(1)计算UCNu,式(3)计算Tu;(13)  for each liLu,t do
     (2) k←0; 初始化C={c1, c2}和A={aij};(14)   计算dli,lp(l|li);
     (3) repeat(15)   计算 p1(l|Lu,t)←p1(l|Lu,tp(l|li);
     (4) kk+1;(16)   计算 p2(l|Lu,t);
     (5) 更新聚类中心C(k)和A(k-1);(17)  end for
     (6) 更新隶属度矩阵A(k)和聚类中心C(k);(18)  使用式(20)计算pt(l);
     (7) until 式(5)收敛(19) end for
     (8) 返回au={a1u, a2u};(20) end for
     (9) for t’=0 to 23 do(21) 使用式(22)计算Pu,t,l;
     (10) 使用式(21)计算wt’-t; 使用式(15)—式(17)计算H;(22) 排序Pu,t,l并返回top-n兴趣点。
    下载: 导出CSV

    表 2  LBSNs签到数据集的统计情况

    数据集签到数兴趣点数用户数每个用户访问地点平均数每个地点的平均访问数每个用户平均签到数签到密度
    Foursquare194108559623214619840.0149
    Gowalla45690524236101623013450.0019
    下载: 导出CSV

    表 3  Foursquare和Gowalla数据集的不活跃和活跃用户数据统计

    数据集用户类别用户数量签到记录总数平均签到记录数平均签到时间槽数平均签到地点数
    Foursquare不活跃用户190888181461228
    活跃用户41310592725619114
    Gowalla不活跃用户975630462131921
    活跃用户40615228437518204
    下载: 导出CSV

    表 4  兴趣点推荐算法在两个数据集上的Fβ指标值(β=1)

    数据集Top-nSKUTE+SETPR+UMSAMMUCA-TS
    Foursquaretop-50.04130.04350.05550.06640.0749
    top-100.03440.03560.04570.05970.0669
    top-200.02450.02580.03980.05200.0571
    Gowallatop-50.03990.04250.04660.05920.0663
    top-100.03130.03280.03940.05510.0602
    top-200.02190.02290.02830.04160.0450
    下载: 导出CSV
  • 加载中
图(5)表(4)
计量
  • PDF下载量:  38
  • 文章访问数:  1140
  • HTML全文浏览量:  452
文章相关
  • 通讯作者:  张付志, xjzfz@ysu.edu.cn
  • 收稿日期:  2019-04-25
  • 录用日期:  2019-10-29
  • 网络出版日期:  2019-11-11
  • 刊出日期:  2020-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章