
Citation: Yan ZUO, Xialei ZHOU, Taoran JIANG. Algebraic Solution for 3D Localization of Multistatic Passive Radar in the Presence of Sensor Position Errors[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190292

传感器位置误差下外辐射源雷达三维定位代数解算法
-
关键词:
- 外辐射源雷达
- / 观测站位置误差
- / 双基距离和差(BRD)
- / 两步加权最小二乘(TS-WLS)
English
Algebraic Solution for 3D Localization of Multistatic Passive Radar in the Presence of Sensor Position Errors
-
-
[1]
LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006
-
[2]
INGGS M, TONG C, NADJIASNGAR R, et al. Planning and design phases of a commensal radar system in the FM broadcast band[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 50–63. doi: 10.1109/MAES.2014.130165
-
[3]
CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network: Initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2460–2469. doi: 10.1109/TAES.2015.130270
-
[4]
GASSIER G, CHABRIEL G, BARRÈRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511
-
[5]
王鼎, 魏帅. 基于外辐射源的约束总体最小二乘定位算法及其理论性能分析[J]. 中国科学: 信息科学, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397
WANG Ding and WEI Shuai. The constrained-total-least-squares localization algorithm and performance analysis based on an external illuminator[J]. SCIENTIA SINICA Informationis, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397 -
[6]
MALANOWSKI M and KULPA K. Two methods for target localization in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 572–580. doi: 10.1109/TAES.2012.6129656
-
[7]
NOROOZI A and SEBT M A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671. doi: 10.1109/TAES.2017.2669558
-
[8]
CHAN Y T and HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905–1915. doi: 10.1109/78.301830
-
[9]
WANG Yue and HO K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4532–4544. doi: 10.1109/TSP.2013.2271750
-
[10]
曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019 -
[11]
GODRICH H, HAIMOVICH A M, and BLUM R S. Target localization accuracy gain in MIMO radar-based systems[J]. IEEE Transactions on Information Theory, 2010, 56(6): 2783–2803. doi: 10.1109/tit.2010.2046246
-
[12]
ALAM M and JAMIL K. Maximum likelihood (ML) based localization algorithm for multi-static passive radar using range-only measurements[C]. Proceedings of 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 180–184. doi: 10.1109/RadarConf.2015.7411876.
-
[13]
NOROOZI A and SEBT M A. Target localization from bistatic range measurements in multi-transmitter multi-receiver passive radar[J]. IEEE Signal Processing Letters, 2015, 22(12): 2445–2449. doi: 10.1109/LSP.2015.2491961
-
[14]
NOROOZI A and SEBT M A. Weighted least squares target location estimation in multi-transmitter multi-receiver passive radar using bistatic range measurements[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1088–1097. doi: 10.1049/iet-rsn.2015.0446
-
[15]
AMIRI R, BEHNIA F, and ZAMANI H. Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars[J]. IEEE Signal Processing Letters, 2017, 24(3): 299–303. doi: 10.1109/LSP.2017.2660545
-
[16]
AMIRI R and BEHNIA F. An efficient weighted least squares estimator for elliptic localization in distributed MIMO radars[J]. IEEE Signal Processing Letters, 2017, 24(6): 902–906. doi: 10.1109/LSP.2017.2697500
-
[17]
NOROOZI A, OVEIS A H, and SEBT M A. Iterative target localization in distributed MIMO radar from bistatic range measurements[J]. IEEE Signal Processing Letters, 2017, 24(11): 1709–1713. doi: 10.1109/LSP.2017.2747479
-
[18]
AMIRI R, BEHNIA F, and SADR M A M. Exact solution for elliptic localization in distributed MIMO radar systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1075–1086. doi: 10.1109/TVT.2017.2762631
-
[19]
赵勇胜, 赵拥军, 赵闯, 等. 一种新的分布式MIMO雷达系统运动目标定位代数解算法[J]. 电子与信息学报, 2018, 40(3): 548–556. doi: 10.11999/JEIT170510
ZHAO Yongsheng, ZHAO Yongjun, ZHAO Chuang, et al. New algebraic algorithm for moving target localization in distributed MIMO radar systems[J]. Journal of Electronics &Information Technology, 2018, 40(3): 548–556. doi: 10.11999/JEIT170510 -
[20]
ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar[J]. Signal Processing, 2018, 143: 303–310. doi: 10.1016/j.sigpro.2017.09.014
-
[1]
-