高级搜索

基于矢量图的特定辐射源识别方法

潘一苇 杨司韩 彭华 李天昀 王文雅

引用本文: 潘一苇, 杨司韩, 彭华, 李天昀, 王文雅. 基于矢量图的特定辐射源识别方法[J]. 电子与信息学报, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329 shu
Citation:  Yiwei PAN, Sihan YANG, Hua PENG, Tianyun LI, Wenya WANG. Specific Emitter Identification Using Signal Trajectory Image[J]. Journal of Electronics and Information Technology, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329 shu

基于矢量图的特定辐射源识别方法

    作者简介: 潘一苇: 男,1990年生,博士生,研究方向为通信信号处理、特定辐射源识别;
    杨司韩: 男,1990年生,硕士生,研究方向为通信信号处理、深度学习;
    彭华: 男,1973年生,教授,研究方向为通信信号处理、软件无线电;
    李天昀: 男,1979年生,副教授,研究方向为通信信号处理、软件无线电;
    王文雅: 女,1991年生,硕士生,研究方向为通信信号处理、可见光通信
    通讯作者: 潘一苇,novakd@163.com
  • 基金项目: 国家自然科学基金 (61401511, U1736107)

摘要: 发射机的指纹特征具有复杂性,现有的认识水平制约了特定辐射源识别(SEI)的性能。为此,该文提出一种基于矢量图的SEI方法,应用深度学习技术实现了多种复杂特征的联合提取。该文首先分析了多种发射机畸变在矢量图上的视觉表现;在此基础上,以矢量图灰度图像作为信号表示,构建深度残差网络提取图像中的视觉特征。该方法克服了现有认知的局限,兼具高信息完整性和低计算复杂度。实验结果表明,与现有算法相比,该方法能够显著改善SEI的性能,识别增益约为30%。

English

    1. [1]

      DANEV B, ZANETTI D, and CAPKUN S. On physical-layer identification of wireless devices[J]. ACM Computing Surveys, 2012, 45(1): 1–29. doi: 10.1145/2379776.2379782

    2. [2]

      SPEZIO A E. Electronic warfare systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 633–644. doi: 10.1109/22.989948

    3. [3]

      MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446

    4. [4]

      HAN Jie, ZHANG Tao, REN Dongfang, et al. Communication emitter identification based on distribution of bispectrum amplitude and phase[J]. IET Science, Measurement & Technology, 2017, 11(8): 1104–1112. doi: 10.1049/iet-smt.2017.0024

    5. [5]

      BERTONCINI C, RUDD K, NOUSAIN B, et al. Wavelet fingerprinting of radio-frequency identification (RFID) tags[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4843–4850. doi: 10.1109/TIE.2011.2179276

    6. [6]

      ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908

    7. [7]

      SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665

    8. [8]

      BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]. The 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 116–127.

    9. [9]

      HUANG Yuanling and ZHENG Hui. Radio frequency fingerprinting based on the constellation errors[C]. The 18th Asia-Pacific Conference on Communications, Jeju Island, South Korea, 2012: 900–905.

    10. [10]

      彭林宁, 胡爱群, 朱长明, 等. 基于星座轨迹图的射频指纹提取方法[J]. 信息安全学报, 2016, 1(1): 50–58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
      PENG Linning, HU Aiqun, ZHU Changming, et al. Radio fingerprint extraction based on constellation trace figure[J]. Journal of Cyber Security, 2016, 1(1): 50–58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007

    11. [11]

      O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022

    12. [12]

      KULIN M, KAZAZ T, MOERMAN I, et al. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6: 18484–18501. doi: 10.1109/ACCESS.2018.2818794

    13. [13]

      RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146–152. doi: 10.1109/MCOM.2018.1800153

    14. [14]

      DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594. doi: 10.1109/LCOMM.2018.2871465

    15. [15]

      Agilent Technologies. Agilent technologies wireless test solutions application note 1313: Testing and troubleshooting digital RF communications transmitter designs[EB/OL]. http://literature.cdn.keysight.com/litweb/pdf/5968-3578E.pdf, 2016.

    16. [16]

      SRIDHARAN G. Phase noise in multi-carrier systems[D]. [Master dissertation], University of Toronto, 2010: 9–44.

    17. [17]

      HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.

    1. [1]

      刘雪艳, 芦婷婷, 杨晓涛. 具有隐私保护的完整性可验证的关键字搜索方案. 电子与信息学报, 2020, 41(0): 1-8.

    2. [2]

      张天骐, 范聪聪, 葛宛营, 张天. 基于ICA和特征提取的MIMO信号调制识别算法. 电子与信息学报, 2020, 41(0): 1-8.

    3. [3]

      张文明, 姚振飞, 高雅昆, 李海滨. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型. 电子与信息学报, 2020, 42(5): 1201-1208.

    4. [4]

      陈家祯, 吴为民, 郑子华, 叶锋, 连桂仁, 许力. 基于虚拟光学的视觉显著目标可控放大重建. 电子与信息学报, 2020, 42(5): 1209-1215.

    5. [5]

      刘焕淋, 胡会霞, 陈勇, 温濛, 王展鹏. 节点中介性和频谱离散度感知虚拟光网络生存性协同映射. 电子与信息学报, 2020, 41(0): 1-7.

    6. [6]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    7. [7]

      申铉京, 沈哲, 黄永平, 王玉. 基于非局部操作的深度卷积神经网络车位占用检测算法. 电子与信息学报, 2020, 41(0): 1-8.

    8. [8]

      胡永健, 高逸飞, 刘琲贝, 廖广军. 基于图像分割网络的深度假脸视频篡改检测. 电子与信息学报, 2020, 42(0): 1-9.

    9. [9]

      徐少平, 林珍玉, 崔燕, 刘蕊蕊, 杨晓辉. 采用双通道卷积神经网络构建的随机脉冲噪声深度降噪模型. 电子与信息学报, 2020, 41(0): 1-8.

    10. [10]

      陈卓, 冯钢, 何颖, 周杨. 运营商网络中基于深度强化学习的服务功能链迁移机制. 电子与信息学报, 2020, 42(0): 1-7.

    11. [11]

      李骜, 刘鑫, 陈德运, 张英涛, 孙广路. 基于低秩表示的鲁棒判别特征子空间学习模型. 电子与信息学报, 2020, 42(5): 1223-1230.

    12. [12]

      陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法. 电子与信息学报, 2020, 42(6): 1486-1493.

    13. [13]

      杨静, 李金科. 带有特征感知的D2D内容缓存策略. 电子与信息学报, 2020, 42(0): 1-7.

    14. [14]

      赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌. 面向可靠性的5G网络切片重构及映射算法. 电子与信息学报, 2020, 42(6): 1478-1485.

    15. [15]

      曾帅, 钱志华, 赵天烽, 任彦, 王育杰. 生存性条件约束下的软件定义光网络控制器部署算法. 电子与信息学报, 2020, 41(0): 1-8.

    16. [16]

      刘焕淋, 杜理想, 陈勇, 王展鹏. 基于灾难预测多区域故障的虚拟光网络生存性映射. 电子与信息学报, 2020, 42(7): 1710-1717.

    17. [17]

      张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略. 电子与信息学报, 2020, 42(6): 1444-1451.

    18. [18]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法. 电子与信息学报, 2020, 42(0): 1-8.

    19. [19]

      袁庆军, 张勋成, 高杨, 王永娟. 轻量级分组密码PUFFIN的差分故障攻击. 电子与信息学报, 2020, 42(6): 1519-1525.

    20. [20]

      贺利芳, 吴雪霜, 张天骐. 正交多载波降噪差分混沌键控通信系统. 电子与信息学报, 2020, 41(0): 1-9.

  • 图 1  I/Q正交调制发射机

    图 2  I/Q调制器畸变的视觉表现

    图 3  滤波器畸变的视觉表现

    图 4  振荡器畸变的视觉表现

    图 5  功率放大畸变的视觉表现

    图 6  矢量图灰度图像

    图 7  深度残差网络的网络结构

    图 8  残差单元个数对识别性能的影响

    图 9  符号个数对识别性能的影响

    图 10  过采倍数对识别性能的影响

    图 11  不同算法的识别性能

    表 1  不同算法的复杂度对比

    算法文献[6]算法文献[8]算法文献[9]算法文献[10]算法文献[14]算法本文算法
    复杂度$O\left( {ML\lg \left( {ML} \right)} \right) + O\left( S \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {ML} \right) + O\left( L \right)$$O\left( {PQ\lg Q} \right) + O\left( S \right)$$O\left( {ML} \right) + O\left( S \right)$
    下载: 导出CSV

    表 2  不同辐射源的畸变参数

    辐射源1234567
    $g$0.02990.01880.0081–0.0025–0.0128–0.0230–0.0329
    $\phi $0.01370.00930.00500.0006–0.0038–0.0081–0.0125
    ${c_{\rm I}}$0.01420.00970.00520.0007–0.0038–0.0083–0.0128
    ${c_{\rm Q}}$0.01470.01020.00570.0012–0.0033–0.0078–0.0123
    ${a_n}$–0.0640–0.0429–0.0218–0.00070.02040.04150.0627
    ${b_n}$–0.0740–0.0498–0.0256–0.00140.02280.04700.0713
    ${c_{\rm o}}$0.00020.00100.00180.00260.00340.00420.0050
    ${\lambda _3}$–0.2915–0.0079i–0.0003–0.0004i–0.4371–0.0092i–0.1459–0.0066i–0.5827–0.0096i–0.0731–0.0042i–0.3643–0.0085i
    ${\lambda _5}$0.0295+0.0005i0.0001+0.0004i0.0821+0.0048i0.0338+0.0014i0.0537+0.0029i0.0571+0.0035i0.0484+0.0022i
    下载: 导出CSV

    表 3  网络结构及其参数量和单批次训练时间

    RN246810
    conv17×7, 32, stride2
    max pool3×3, stride 2
    conv2_x$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,32 \\ 3 \times 3,32 \\ \end{array} \right] \times 2$
    conv3_x$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,64 \\ 3 \times 3,64 \\ \end{array} \right] \times 2$
    conv4_x$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,128 \\ 3 \times 3,128 \\ \end{array} \right] \times 2$
    conv5_x$\left[ \begin{array}{l} 3 \times 3,256 \\ 3 \times 3,256 \\ \end{array} \right] \times 2$$\left[ \begin{array}{l} 3 \times 3,256 \\ 3 \times 3,256 \\ \end{array} \right] \times 2$
    conv6_x$\left[ \begin{array}{l} 3 \times 3,512 \\ 3 \times 3,512 \\ \end{array} \right] \times 2$
    avg pool5-d fc, softmax
    参数量3.9×1041.7×1056.8×1052.7×1061.1×107
    训练时间 (s)0.35160.38580.40190.42620.4584
    下载: 导出CSV
  • 加载中
图(11)表(3)
计量
  • PDF下载量:  61
  • 文章访问数:  1275
  • HTML全文浏览量:  569
文章相关
  • 通讯作者:  潘一苇, novakd@163.com
  • 收稿日期:  2019-05-07
  • 录用日期:  2019-07-23
  • 网络出版日期:  2019-09-29
  • 刊出日期:  2020-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章