高级搜索

基于均值不等关系优化的自适应图像去雾算法

杨燕 王志伟

引用本文: 杨燕, 王志伟. 基于均值不等关系优化的自适应图像去雾算法[J]. 电子与信息学报, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368 shu
Citation:  Yan YANG, Zhiwei WANG. Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization[J]. Journal of Electronics and Information Technology, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368 shu

基于均值不等关系优化的自适应图像去雾算法

    作者简介: 杨燕: 女,1972年生,博士,教授、硕士生导师,主要研究方向为数字图像处理、智能信息处理、语音信号处理;
    王志伟: 男,1996年生,硕士生,主要研究方向为数字图像处理、计算机视觉
    通讯作者: 杨燕,yangyantd@mail.lzjtu.cn
  • 基金项目: 国家自然科学基金(61561030),甘肃省财政厅基本科研业务费基金(214138),兰州交通大学教改基金(160012)

摘要: 针对暗通道先验去雾算法的不足,如天空区域透射率估计过小和在景深突变处易发生光晕效应,该文提出一种新颖且高效的去雾算法。首先通过几何分析建立雾图对应无雾图像暗通道图的平面扇形模型,然后设定一种新型的高斯均值函数,对其标准差进行自适应处理,用以估计扇形模型的上下边界值,通过引入均值不等关系对两侧边界进行逼近,拟合出最优无雾图像暗通道图,进一步求得最佳透射率,同时也改进局部大气光的探索方法并复原出最终结果。实验表明,与其它一些经典算法相比较,所提算法能广泛适用于各类图像,去雾程度彻底且效果清晰自然,具有较低的时间复杂度,有利于实时处理。

English

    1. [1]

      周妍, 李庆武, 霍冠英. 基于非下采样Contourlet变换系数直方图匹配的自适应图像增强[J]. 光学 精密工程, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214
      ZHOU Yan, LI Qingwu, and HUO Guanying. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Optics and Precision Engineering, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214

    2. [2]

      CHEN Yang, LI Dan, and ZHANG Jianqiu. Complementary color wavelet: A novel tool for the color image/video analysis and processing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(1): 12–27. doi: 10.1109/TCSVT.2017.2776239

    3. [3]

      刘海波, 杨杰, 吴正平, 等. 基于暗通道先验和Retinex理论的快速单幅图像去雾方法[J]. 自动化学报, 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748
      LIU Haibo, YANG Jie, WU Zhengping, et al. A fast single image dehazing method based on dark channel prior and Retinex theory[J]. Acta Automatica Sinica, 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748

    4. [4]

      SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511–525. doi: 10.1364/AO.42.000511

    5. [5]

      NARASIMHAN S G and NAYAR S K. Interactive (de) weathering of an image using physical models[C]. 2003 IEEE Workshop on Color and Photometric Methods in Computer Vision, Nice, France, 2003: 1–8.

    6. [6]

      TAN R T. Visibility in bad weather from a single image[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587643.

    7. [7]

      FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 72. doi: 10.1145/1360612.1360671

    8. [8]

      TAREL J P and HAUTIÈRE N. Fast visibility restoration from a single color or gray level image[C]. The 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2201–2208.

    9. [9]

      HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168

    10. [10]

      ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191

    11. [11]

      MENG Gaofeng, WANG Ying, DUAN Jiangyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 617–624.

    12. [12]

      CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681

    13. [13]

      REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 154–169.

    14. [14]

      江巨浪, 孙伟, 王振东, 等. 基于透射率权值因子的雾天图像融合增强算法[J]. 电子与信息学报, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032
      JIANG Julang, SUN Wei, WANG Zhendong, et al. Integrated enhancement algorithm for hazy image using transmittance as weighting factor[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032

    15. [15]

      HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213

    16. [16]

      SUN Wei, WANG Hao, SUN Changhao, et al. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering, 2015, 46: 371–383. doi: 10.1016/j.compeleceng.2015.02.009

    17. [17]

      MIN Xiongkuo, ZHAI Guangtao, GU Ke, et al. Objective quality evaluation of dehazed images[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2879–2892. doi: 10.1109/TITS.2018.2868771

    18. [18]

      杨爱萍, 王南, 庞彦伟, 等. 人工光源条件下夜间雾天图像建模及去雾[J]. 电子与信息学报, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704
      YANG Aiping, WANG Nan, PANG Yanwei, et al. Nighttime haze removal based on new imaging model with artificial light sources[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704

    1. [1]

      姚婷婷, 梁越, 柳晓鸣, 胡青. 基于雾线先验的时空关联约束视频去雾算法. 电子与信息学报, 2020, 42(0): 1-9.

    2. [2]

      柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法. 电子与信息学报, 2020, 42(0): 1-8.

    3. [3]

      易诗, 吴志娟, 朱竞铭, 李欣荣, 袁学松. 基于多尺度生成对抗网络的运动散焦红外图像复原. 电子与信息学报, 2020, 42(7): 1766-1773.

    4. [4]

      付晓薇, 杨雪飞, 陈芳, 李曦. 一种基于深度学习的自适应医学超声图像去斑方法. 电子与信息学报, 2020, 42(7): 1782-1789.

    5. [5]

      徐少平, 林珍玉, 崔燕, 刘蕊蕊, 杨晓辉. 采用双通道卷积神经网络构建的随机脉冲噪声深度降噪模型. 电子与信息学报, 2020, 41(0): 1-8.

    6. [6]

      刘通, 唐伦, 何小强, 陈前斌. 融合区块链与雾计算系统中基于网络时延和资源管理的优化任务卸载方案. 电子与信息学报, 2020, 42(0): 1-6.

    7. [7]

      兰红, 方治屿. 零样本图像识别. 电子与信息学报, 2020, 42(5): 1188-1200.

    8. [8]

      熊伟, 顾祥岐, 徐从安, 崔亚奇. 多编队目标先后出现时的无先验信息跟踪方法. 电子与信息学报, 2020, 42(7): 1619-1626.

    9. [9]

      刘政怡, 刘俊雷, 赵鹏. 基于样本选择的RGBD图像协同显著目标检测. 电子与信息学报, 2020, 42(0): 1-8.

    10. [10]

      赵娅, 郭嘉慧, 李盼池. 一种量子图像的中值滤波方案. 电子与信息学报, 2020, 42(0): 1-8.

    11. [11]

      陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法. 电子与信息学报, 2020, 42(6): 1486-1493.

    12. [12]

      张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移. 电子与信息学报, 2020, 42(5): 1216-1222.

    13. [13]

      牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法. 电子与信息学报, 2020, 42(6): 1383-1391.

    14. [14]

      雷大江, 张策, 李智星, 吴渝. 基于多流融合生成对抗网络的遥感图像融合方法. 电子与信息学报, 2020, 41(0): 1-8.

    15. [15]

      武迎春, 王玉梅, 王安红, 赵贤凌. 基于边缘增强引导滤波的光场全聚焦图像融合. 电子与信息学报, 2020, 41(0): 1-9.

    16. [16]

      郭全民, 柴改霞, 李翰山. 夜视抗晕光融合图像自适应分区质量评价. 电子与信息学报, 2020, 42(7): 1750-1757.

    17. [17]

      许欢, 苏树智, 颜文婧, 邓瀛灏, 谢军. 面向图像识别的测地局部典型相关分析方法. 电子与信息学报, 2020, 42(0): 1-6.

    18. [18]

      胡永健, 高逸飞, 刘琲贝, 廖广军. 基于图像分割网络的深度假脸视频篡改检测. 电子与信息学报, 2020, 42(0): 1-9.

    19. [19]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    20. [20]

      殷志祥, 唐震, 张强, 崔建中, 杨静, 王日晟, 赵寿为, 张居丽. 基于DNA折纸基底的与非门计算模型. 电子与信息学报, 2020, 42(6): 1355-1364.

  • 图 1  3个向量的几何表示

    图 2  各个向量间的匹配关系

    图 3  高斯均值函数

    图 4  透射率及效果对比图

    图 5  大气光值及效果对比图

    图 6  去雾示意图

    图 7  本文算法原理框图

    图 8  近景组图像(图像1-图像3)

    图 9  远近景交替组图像(图像4-图像6)

    图 10  远景组图像(图像7-图像8)

    表 1  改进的大气光探索方法

     输入:有雾图像${{I}^c}(x)$;
     步骤 1 找出有雾图像的3颜色通道的最大值${A}_{\max }^c(x) = \mathop {\max }\limits_{c \in \{\rm r,g,b\} } {{I}^c}(x)$
     步骤 2 进行形态学闭操作,滤波核尺寸分别为${r_1} = \min [w,h]/5$, ${r_2} = \min [w,h]/20$,得到两次闭操作结果${s_1}$和${s_2}$;
     步骤 3 求取两次闭操作的平均值,$s = ({s_1} + {s_2})/2$ ;
     步骤 4 进行交叉滤波平滑处理,得到最后的结果${{A}^c}$。
    下载: 导出CSV

    表 2  各个算法的$e$$r$指标对比

    图像He[9]算法Meng[11]算法Ren[13]算法Cai[12]算法Sun[16]算法本文算法
    erererererer
    14.501.285.821.797.551.472.761.086.441.229.011.41
    28.441.695.362.4820.711.5217.871.5615.741.4918.681.81
    313.891.7022.562.5910.821.979.111.4711.222.0121.832.01
    410.831.4824.933.7727.003.019.871.3612.741.9922.632.22
    56.871.2812.121.6915.611.7611.101.2817.252.0617.181.64
    626.231.7331.111.9031.362.6018.851.3022.751.9430.042.38
    715.511.8538.034.1220.352.5514.531.6324.742.9818.472.95
    83.691.413.121.588.941.792.491.136.331.748.561.42
    均值11.241.5517.882.4917.792.0811.821.3514.651.9318.301.98
    下载: 导出CSV

    表 3  各个算法的$\theta $$T(s)$指标对比

    图像He[9]算法Meng[11]算法Ren[13]算法Cai[12]算法Sun[16]算法本文算法
    $\theta $T$\theta $T$\theta $T$\theta $T$\theta $T$\theta $T
    10.000182.510.006513.8004.270.009313.010.003472.470.000012.65
    20.000222.560.003553.1603.0502.870.000192.670.000012.04
    30.000312.380.000663.0803.780.001972.940.001622.0102.06
    402.610.000034.5404.600.001262.980.002762.3902.07
    50.000362.460.000043.500.000132.6704.0102.0002.07
    60.001612.8004.4003.360.001183.680.000192.1702.09
    70.000093.020.000145.1003.2203.3102.5702.43
    80.002943.940.000796.550.000183.340.001697.340.000242.770.000162.55
    均值0.000712.780.001464.270.000033.530.001923.770.001052.380.000022.25
    下载: 导出CSV
  • 加载中
图(10)表(3)
计量
  • PDF下载量:  48
  • 文章访问数:  706
  • HTML全文浏览量:  374
文章相关
  • 通讯作者:  杨燕, yangyantd@mail.lzjtu.cn
  • 收稿日期:  2019-05-22
  • 录用日期:  2019-10-29
  • 网络出版日期:  2019-11-12
  • 刊出日期:  2020-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章