高级搜索

面向无线通信的轨道角动量关键技术研究进展

廖希 周晨虹 王洋 廖莎莎 周继华 张杰

引用本文: 廖希, 周晨虹, 王洋, 廖莎莎, 周继华, 张杰. 面向无线通信的轨道角动量关键技术研究进展[J]. 电子与信息学报, doi: 10.11999/JEIT190372 shu
Citation:  Xi LIAO, Chenhong ZHOU, Yang WANG, Shasha LIAO, Jihua ZHOU, Jie ZHANG. A Survey of Orbital Angular Momentum in Wireless Communication[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190372 shu

面向无线通信的轨道角动量关键技术研究进展

    作者简介: 廖希: 女,1988年生,讲师,博士,研究方向为涡旋电磁波、电波传播、射频与微波电子学、信道建模等;
    周晨虹: 女,1996年生,硕士生,研究方向为轨道角动量产生与传播;
    王洋: 男,1986年生,副教授,博士,研究方向为天线与传播、雷达信号处理、无线通信等;
    廖莎莎: 女,1990年生,讲师,博士,研究方向为微波光子学、硅光子学、射频信号处理等;
    周继华: 男,1979年生,研究员,博士,博士生导师,研究方向为移动网络、无线通信、5G等;
    张杰: 男,1967年生,教授,博士,研究方向为涡旋电磁波、毫米波通信、智能环境建模与设计等
    通讯作者: 廖希,liaoxi@cqupt.edu.cn
  • 基金项目: 国家自然科学基金(61801062, No.61601073, 61801063),重庆市基础科学与前沿技术研究项目(CSTC2017JCYJA0817),重庆邮电大学博士启动基金(A2016-110)

摘要: 电磁涡旋因携带轨道角动量而具有高维可调制自由度,被引入无线通信中以提升频谱效率和抗干扰能力。该文首先介绍了轨道角动量和电磁涡旋的基本原理与特性;然后比较了电磁涡旋的产生方法,给出了超表面产生轨道角动量的工作原理,综述了基于超表面的轨道角动量产生方法和研究现状;总结了轨道角动量的传输性能、接收与检测方法、复用与解复用性能;最后讨论了未来在应用无线通信轨道角动量时需要解决的关键问题。

English

    1. [1]

      POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(557): 560–567.

    2. [2]

      DARWIN C G. Notes on the theory of radiation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1932, 136(829): 36–52.

    3. [3]

      ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185

    4. [4]

      TAO S H, YUAN X C, LIN J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731. doi: 10.1364/OPEX.13.007726

    5. [5]

      SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Optics Letters, 1997, 22(1): 52–54. doi: 10.1364/OL.22.000052

    6. [6]

      DI TRAPANI P, CHINAGLIA W, MINARDI S, et al. Observation of quadratic optical vortex solitons[J]. Physical Review Letters, 2000, 84(17): 3843–3846. doi: 10.1103/PhysRevLett.84.3843

    7. [7]

      POPESCU G and DOGARIU A. Spectral anomalies at wave-front dislocations[J]. Physical Review Letters, 2002, 88(18): 183902. doi: 10.1103/PhysRevLett.88.183902

    8. [8]

      BERŽANSKIS A, MATIJOŠLUS A, PISKARSKAS A, et al. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Optics Communications, 1997, 140(4/6): 273–276.

    9. [9]

      GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448

    10. [10]

      XIE Guodong, REN Yongxiong, YAN Yan, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447–3450. doi: 10.1364/OL.41.003447

    11. [11]

      NDAGANO B, NAPE I, COX M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. doi: 10.1109/JLT.2017.2766760

    12. [12]

      YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630

    13. [13]

      LIN Mingtuan, LIU Peiguo, GAO Yue, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13): 1168–1170. doi: 10.1049/el.2016.0237

    14. [14]

      SHI Chengzhi, DUBOIS M, WANG Yuan, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250–7253. doi: 10.1073/pnas.1704450114

    15. [15]

      THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701

    16. [16]

      WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138

    17. [17]

      TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001

    18. [18]

      PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265

    19. [19]

      刘康, 黎湘, 王宏强, 等. 涡旋电磁波及其在雷达中应用研究进展[J]. 电子学报, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
      LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034

    20. [20]

      CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370

    21. [21]

      JING Haiyue, CHENG Wenchi, LI Zan, et al. Concentric UCAs based low-order OAM for high capacity in radio vortex wireless communications[J]. Journal of Communications and Information Networks, 2018, 3(4): 85–100. doi: 10.1007/s41650-018-0036-z

    22. [22]

      CHENG Wenchi, ZHANG Hailin, LIANG Liping, et al. Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmwave communications[J]. IEEE Access, 2018, 6: 2732–2745. doi: 10.1109/ACCESS.2017.2785125

    23. [23]

      LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539

    24. [24]

      孙学宏, 李强, 庞丹旭, 等. 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025
      SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025

    25. [25]

      MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—a system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701

    26. [26]

      TAMBURINI F, THIDÉ B, MARI E, et al. Reply to comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002

    27. [27]

      GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456.(本条文献与第9条文献信息重复, 请核对 doi: 10.1364/OPEX.12.005448

    28. [28]

      BOUCHAL Z and CELECHOVSKY R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131.

    29. [29]

      MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529

    30. [30]

      CHEN Menglin, JIANG Lijun, and SHA Wei. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362

    31. [31]

      MACCALLI S, PISANO G, COLAFRANCESCO S, et al. Q-plate for millimeter-wave orbital angular momentum manipulation[J]. Applied Optics, 2013, 52(4): 635–639. doi: 10.1364/AO.52.000635

    32. [32]

      KOU Na, YU Shixing, and LI Long. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1): 016701. doi: 10.7567/APEX.10.016701

    33. [33]

      CHEN Menglin, JIANG Lijun, and SHA Wei. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency[J]. Journal of Applied Physics, 2016, 119(6): 064506. doi: 10.1063/1.4941696

    34. [34]

      GUO Yinghui, PU Mingbo, ZHAO Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary Orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564

    35. [35]

      KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

    36. [36]

      MA Xiaoliang, PU Mingbo, LI Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365

    37. [37]

      CHEN Menglin, JIANG Lijun, and SHA Wei. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722

    38. [38]

      CHEN Menglin, JIANG Lijun, and SHA Wei. Generation of orbital angular momentum by a point defect in photonic crystals[J]. Physical Review Applied, 2018, 10(1): 014034. doi: 10.1103/PhysRevApplied.10.014034

    39. [39]

      XU Bijun, WU Chao, WEI Zeyong, et al. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase[J]. Optical Materials Express, 2016, 6(12): 3940–3945. doi: 10.1364/OME.6.003940

    40. [40]

      SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732

    41. [41]

      CHEN Menglin, JIANG Lijun, and SHA Wei. Quasi-continuous metasurfaces for orbital angular momentum generation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 477–481. doi: 10.1109/LAWP.2019.2894772

    42. [42]

      ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078

    43. [43]

      YAN Yan, LI Long, XIE Guodong, et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing[C]. Proceedings of 2015 IEEE International Conference on Communications, London, UK, 2015: 1370–1375.

    44. [44]

      YAO Yu, LIANG Xianlin, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760

    45. [45]

      ZHANG Runzhou, LI Long, ZHAO Zhe, et al. Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium[J]. Optics Letters, 2019, 44(3): 691–694. doi: 10.1364/OL.44.000691

    46. [46]

      NIEMIEC R, BROUSSEAU C, EMILE O, et al. Study of OAM waves reflection on different types of surfaces or objects at 2.45 GHz[C]. Proceedings of 2015 1st URSI Atlantic Radio Science Conference, Las Palmas, Spain, 2015: 1–2.

    47. [47]

      CHEN Menglin, JIANG Lijun, and SHA Wei. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439

    48. [48]

      MOHAMMADI S M, DALDORFF L K S, FOROZESH K, et al. Orbital angular momentum in radio: measurement methods[J]. Radio Science, 2010, 45(4): RS4007.

    49. [49]

      HUI Xiaonan, ZHENG Shilie, ZHANG Weite, et al. Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition[J]. Optics Express, 2016, 24(5): 5423–5430. doi: 10.1364/OE.24.005423

    50. [50]

      ZHANG Chao and MA Lu. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna[J]. Scientific Reports, 2017, 7(1): 4585. doi: 10.1038/s41598-017-04313-4

    51. [51]

      LIU Changming, WEI Xuli, NIU Liting, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer[J]. Optics Express, 2016, 24(12): 12534–12541. doi: 10.1364/OE.24.012534

    52. [52]

      ZHENG Shilie, JIN Xiaofeng, ZHANG Xianmin, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047.

    53. [53]

      武华阳. 无线轨道角动量通信与雷达目标成像技术研究[D]. [硕士论文], 浙江大学, 2017.
      WU Huayang. Research on wireless communication and radar target imaging technique based on OAM[D]. [Master dissertation], Zhejiang University, 2017.

    54. [54]

      LEE D, SASAKI H, FUKUMOTO H, et al. Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications[J]. IEICE Transactions on Communications, 2017, 100(7): 1044–1063.

    55. [55]

      黄铭, 毛福春, 曾佳, 等. 轨道角动量复用技术[J]. 中国无线电, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018
      HUANG Ming, MAO Fuchun, ZENG Jia, et al. Orbital angular momentum multiplexing technology[J]. China Radio, 2013(5): 34–36.(未找到本条文献英文信息, 请核对) doi: 10.3969/j.issn.1672-7797.2013.05.018

    56. [56]

      ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199

    57. [57]

      LI Yang, LI Xiong, CHEN Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502

    58. [58]

      ZHANG Di, CAO Xiangyu, GAO Jun, et al. A shared aperture 1 bit metasurface for orbital angular momentum multiplexing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 566–570. doi: 10.1109/LAWP.2019.2893492

    59. [59]

      OPARE K A, KUANG Yujun, and KPONYO J J. Mode combination in an ideal wireless OAM-MIMO multiplexing system[J]. IEEE Wireless Communications Letters, 2015, 4(4): 449–452. doi: 10.1109/LWC.2015.2434375

    60. [60]

      LEE D, SASAKI H, FUKUMOTO H, et al. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing[C]. Proceedings of 2018 IEEE 87th Vehicular Technology Conference, Porto, Portugal, 2018: 1–5.

    61. [61]

      YAN Yan, LI Long, XIE Guodong, et al. OFDM over mm-wave OAM channels in a multipath environment with intersymbol interference[C]. Proceedings of 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6.

    62. [62]

      CHEN Rui, YANG Wenhai, XU Hui, et al. A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5481–5485. doi: 10.1109/TVT.2018.2817230

    63. [63]

      HU Tao, WANG Yang, LIAO Xi, et al. OFDM-OAM modulation for future wireless communications[J]. IEEE Access, 2019, 7: 59114–59125. doi: 10.1109/ACCESS.2019.2915035

    64. [64]

      GOU Pengqi, KONG Miao, YANG Guomin, et al. Integration of OAM and WDM in optical wireless system by radial uniform circular array[J]. Optics Communications, 2018, 424: 159–162. doi: 10.1016/j.optcom.2018.04.059

    65. [65]

      YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876

    66. [66]

      观察者. 中国完成世界首次微波频段轨道角动量电磁波27.5公里长距离传输实验[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.
      Guancha Syndicate. China has completed the world's first long-distance transmission experiment of 27.5 km of microwave frequency orbital angular momentum electromagnetic wave[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017. (未找到本条文献英文信息, 请核对)

    67. [67]

      TAMAGNONE M, CRAEYE C, and PERRUISSEAU-CARRIER J. Comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118001. doi: 10.1088/1367-2630/14/11/118001

    1. [1]

      傅友华, 赵睿, 杨绿溪. 基于最优波束成型的中继增强型无线通信系统的性能分析. 电子与信息学报,

    2. [2]

      杨贵德, 周渊平, 夏文龙. 协同信道空时优化MIMO无线传输系统. 电子与信息学报,

    3. [3]

      李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究. 电子与信息学报,

    4. [4]

      刘焕淋, 熊翠连, 陈勇. 频谱效率优先的任播路由冲突感知的弹性光网络资源重配置. 电子与信息学报,

    5. [5]

      王成, 林长星, 邓贤进, 肖仕伟. 140 GHz高速无线通信技术研究. 电子与信息学报,

    6. [6]

      许晓丹, 毕光国, 张在琛. 循环功率谱特征检测算法在认知超宽带无线通信的应用. 电子与信息学报,

    7. [7]

      李泳志, 陶成, 刘留, 卢艳萍, 刘凯. 莱斯信道下分布式大规模MIMO系统基站选择算法的研究. 电子与信息学报,

    8. [8]

      刘凯, 陈贵潮, 陶成, 周涛. 基于混合精度模数转换器的大规模MIMO-OFDM系统性能分析. 电子与信息学报,

    9. [9]

      黄晓舸, 樊伟伟, 曹春燕, 陈前斌. 小蜂窝网络中不活跃用户的最优能量效率资源分配方案. 电子与信息学报,

    10. [10]

      张晶, 朱洪波. 混合式频谱共享系统功率分配研究. 电子与信息学报,

    11. [11]

      刘勤, 李红霞, 李钊, 孔欣怡. 基于认知的LTE系统动态频谱分配. 电子与信息学报,

    12. [12]

      袁龙, 邢禄, 彭涛, 王文博. 基于精确噪声估计的迭代频谱感知算法. 电子与信息学报,

    13. [13]

      孙君, 朱洪波. 机会频谱接入系统中基于次用户容量分析的检测参数设计. 电子与信息学报,

    14. [14]

      劳子轩, 刘子扬, 彭涛, 王文博. 全盲频谱感知:噪声估计与能量检测联合迭代算法. 电子与信息学报,

    15. [15]

      王伦文, 孙伟, 潘高峰. 一种电磁环境复杂度快速评估方法. 电子与信息学报,

    16. [16]

      赵亮, 金梁, 刘双平, 黄开枝, 钟州. 四种超宽带扩频方案的电磁兼容性能研究. 电子与信息学报,

    17. [17]

      董彬虹, 唐鹏, 杜洋, 程郁凡. 压缩频谱的差分跳频信号在莱斯衰落信道下的性能分析. 电子与信息学报,

    18. [18]

      房曙光, 董育宁, 张晖, 王再见. 多速率调制无线信道服务过程及信道建模. 电子与信息学报,

    19. [19]

      赵亮, 金梁, 刘双平, 张剑, 杨梅樾. 基于Dechirp和多相滤波结构的超宽带通信系统. 电子与信息学报,

    20. [20]

      李进, 冯大政, 房嘉奇. MIMO通信系统中QAM信号的快速半盲均衡算法研究. 电子与信息学报,

  • 图 1  PEC-PMC超表面示意图

    图 2  实验测量装置图

    图 3  环形孔超表面示意图

    图 4  超表面的几何结构俯视图

    图 5  多径信道系统模型示意图

    图 6  OAM多径效应镜面反射模型示意图[48]

    图 7  OAM-MDM系统示意图

    图 8  复用与解复用示意图 (a)复用器; (b)解复用器

    图 9  天线UCA示意图

    表 1  电磁涡旋特性

    特性基本原理潜在应用
    正交性任意两个整数阶模态的OAM波束互相正交,构成无穷维希尔伯特空间提升系统频谱效率
    发散性随着距离和OAM阶数的增加,OAM波束发散程度加剧
    稳定性OAM的相位结构与传输距离无关[26];当拓扑电荷为整数时相位奇点处场强为零,并且随着传播距离增加,中心对称的场强分布保持稳定。实现长距离传输
    反射性OAM涡旋波束经过镜面反射只改变旋转方向不影响波前相位结构有利于分析多径效应
    对传输系统的影响
    安全性受到角度限制和横向偏移的影响,在传输过程中对信号的抽样检测存在不确定性[27],可有效防止信息被窃取。更高编码强度,实现高容量高保密性通信[28]
    多维量子纠缠单光子或纠缠光子可用于量子信息处理,非整数模态OAM模态可以分解为整数OAM模态的线性叠加;纠缠的量子态不可分离[29]
    下载: 导出CSV

    表 2  典型OAM产生方法与分类

    产生方式生成原理典型代表优缺点应用
    透射光栅结构利用干涉条纹产生的交叉错位结果得到的叉形光栅生成相位全息图,结合计算机仿真数据制作相位全息面。空间光调制器成本低、转换速度快、可工作在任意频率、系统复杂度较低;但是仅能实现单模态和非纯模态的生成、器件实现较复杂。可用于毫米波频段产生OAM波束,通过空间复用提高频谱效率。
    透射螺旋结构波束透过厚度$h$随中心旋转方位角$\phi $比例变化的相位板,产生相位差随厚度变化的透射电磁波。单阶梯型螺旋相位板多阶梯型螺旋相位板多孔型螺旋相位板成本低、转换效率高、系统复杂度较低;但是仅能在单点频率上实现单模态转换,并且器件转换过程较复杂。可用于实现高容量、高频谱效率的毫米波和太赫兹通信。
    透射反射面波束入射到非平面螺旋结构的不同区域,导致波束相邻部分存在相对延迟。阶梯型反射面成本低、系统复杂度较低、转换效率和转换速度正常;但是仅能在单点频率上生成单模态和非纯模态,并且实现过程较复杂。通过OAM编码技术实现同频宽带干扰和地面反射干扰的鲁棒性传输。
    螺旋抛物面天线
    天线阵列为各阵列单元馈送相同信号,通过改变阵元间馈电相位差产生不同的模态。圆形相控阵列时间开关阵列巴特勒矩阵馈电阵列光实时延时天线阵列可在所有频率范围内生成多个模态和相反模态,器件制作较容易,转换速度和效率一般;但是成本高、系统复杂度较高。可对携带OAM的射频信号进行多路复用和解复用,增加系统容量和效率。
    q-板在普通介质材料上加工特定几何形状的凹槽形成一种非均匀双折射结构。成本低、系统复杂度较低、转换速度一般;但是仅能在单点频率处生成单模态,实现过程也较复杂。可用于100 GHz毫米波OAM波束的产生和检测[31]
    下载: 导出CSV

    表 3  基于超表面的电磁涡旋产生方法比较

    研究团队单元结构产生方法/原理实验频率模态l存在问题
    香港大学和浙江研究团队3维光子晶体点缺陷[38]8.8 GHz±2
    9.7 GHz±1
    偶极子通过调整散射体的几何形状改变其谐振频率,使得相移在设计频率处发生变化[33]6.2 GHz±2超表面散射体之间通常存在不可避免相互耦合现象
    上海同济大学金属贴片
    层金属接地层
    介电间隔层
    梯度相位反射超表面[39]10 GHz1不连续相位剖面会引入相位噪声
    西安交通大学金属片和衬底由变容二极管加载可调谐散射体超表面[40]5.35 GHz±1, ±2元件数量受限,难以生成高模态
    下载: 导出CSV

    表 4  典型的OAM检测方法

    检测方法结构基本原理优缺点结果
    单点法利用OAM远场近似,对检测点上电场和磁场的
    所有3个分量进行模式分析,计算得出
    在空间特定点上的拓扑电荷值。
    成本低、系统复杂度较低;需对整个波前进行采样;适用于单模态和较低模态的检测。
    相位梯度法检测两点间相位梯度,通过螺旋相位结构判定OAM模态。成本低、系统复杂度较低;仅需分析波前上的两个采样点,适用于单模态检测。
    多环谐振器OAM
    天线
    经验模式分解电磁波的基础可以由经验模式分解中的固有模式函数构成,由此定义每个局部拓扑电荷。能够检测叠加态。检测了-2和3的叠加态
    数字虚拟旋转
    天线
    接收天线高速采样示波器频谱分析仪根据旋转多普勒频移和OAM模态之间的关系确定OAM模态。系统较复杂;适用于检测单个模态。检测了1, 2, 4共3个单模态
    衍射模式转换器OAM模式转换器,接收天线SPP板产生不同模态涡旋波束;模式转换器将涡旋波束映射为平面波,通过透镜聚焦产生横向光斑,最后接收。成本较低;需检测整个波前,但是适用于单模态和叠加态的检测。检测了-3到3共7个单模态和两个叠加态
    全息超表面全息超表面超表面将OAM波束转换为高斯波束,通过定位高斯波束在设定位置处的场强确定入射OAM模态。系统复杂度较低;成本高、器件实现较复杂;适用于多个单模态的检测。检测了-2到2共5个单模态
    部分孔径取样接收法将光学中用于OAM解复用的偏角接收孔径法和采样接收法结合。仅需对部分波前进行采样,以检测多个模态;成本高;
    均匀圆形天线
    阵列
    对接收到的电磁涡旋进行频谱分析。可检测相反模态和但,模态;成本高,需对整个波前采样,系统复杂度高。
    下载: 导出CSV

    表 5  OAM与LTE传输速率和频谱利用率比较

    通信类型频谱利用率(bps/Hz)传输速率(Mbps)调制方式
    OAM95.5256016-QAM[16]
    LTE16.32326.464-QAM
    下载: 导出CSV

    表 6  不同传输实验比较

    文献方法模态l传输距离传输速率频率频谱效率误码率
    [17]螺旋抛物面天线0, -1442 m2.4 GHz
    [65]贴片阵列天线±1, ±32.5 m32 Gbps毫米波16 Gbps/Hz3.8×10-3
    [66]部分波阵面接收27.5 km10 GHz
    下载: 导出CSV
  • 加载中
图(9)表(6)
计量
  • PDF下载量:  3
  • 文章访问数:  24
  • HTML全文浏览量:  18
文章相关
  • 通讯作者:  廖希, liaoxi@cqupt.edu.cn
  • 收稿日期:  2019-05-20
  • 录用日期:  2019-09-18
  • 网络出版日期:  2020-03-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章