高级搜索

Keccak类S盒的线性性质研究

关杰 黄俊君

引用本文: 关杰, 黄俊君. Keccak类S盒的线性性质研究[J]. 电子与信息学报, doi: 10.11999/JEIT190570 shu
Citation:  Jie GUAN, Junjun HUANG. Research on Linear Properties of Keccak-like S-box[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190570 shu

Keccak类S盒的线性性质研究

    作者简介: 关杰: 女,1974年生,教授、博士生导师,主要研究方向为密码理论和密码算法分析;
    黄俊君: 男,1995年生,硕士生,主要研究方向为对称密码设计与分析
    通讯作者: 黄俊君,hjj7752@outlook.com
  • 基金项目: 国家自然科学基金(61572516, 61272041, 61272488)

摘要: 该文将Keccak的S盒一般化为n元Keccak类S盒,研究了Keccak类S盒的线性性质。证明了这类S盒的相关优势的取值都为0或${2^{ - k}}$,其中$k \in Z$${\rm{0}} \le k \le \left\lfloor {{2^{ - 1}}n} \right\rfloor $,并且对于此范围内的任意k,都存在输入输出掩码使得相关优势取到${2^{ - k}}$;证明了当输出掩码确定时,其非平凡相关优势都相等;给出了非平凡相关优势为最大值${2^{ - 1}}$时的充要条件与计数,解决了这类S盒的Walsh谱分布规律问题。

English

    1. [1]

      BERTONI G, DAEMEN J, PEETERS M, et al. Keccak[C]. Proceedings of the 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Athens, Greece, 2013: 313-314.

    2. [2]

      NIST. Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family[EB/OL]. http://www.nist.gov/hash-competition, 2007.

    3. [3]

      王永娟, 王涛, 袁庆军, 等. 密码算法旁路立方攻击改进与应用[J]. 电子与信息学报, 2020. doi: 10.11999/JEIT181075
      WANG Yongjuan, WANG Tao, YUAN Qingjun, et al. Side channel cube attack improvement and application on cryptographic algorithm[J]. Journal of Electronics and Information Technology, 2020. doi: 10.11999/JEIT181075

    4. [4]

      赵军, 曾学文, 郭志川. 支持国产密码算法的高速PCIe密码卡的设计与实现[J]. 电子与信息学报, 2019, 41(10): 2402–2408. doi: 10.11999/JEIT190003
      ZHAO Jun, ZENG Xuewen, and GUO Zhichuan. Design and implementation of high speed PCIe cipher card supporting GM algorithms[J]. Journal of Electronics and Information Technology, 2019, 41(10): 2402–2408. doi: 10.11999/JEIT190003

    5. [5]

      DAEMEN J. Cipher and hash function design strategies based on linear and differential cryptanalysis[D]. [Ph.D. dissertation], Katholieke Universiteit Leuven, 1995: 23–58.

    6. [6]

      BERTONI G M, DAEMEN J, PEETERS M, et al. RadioGatún, a belt-and-mill hash function[C]. Proceedings of the 2nd Cryptographic Hash Workshop, Santa Barbara, USA, 2006: 24–25.

    7. [7]

      GUO Xu, SRIVASTAV M, HUANG Sinan, et al. ASIC implementations of five SHA-3 finalists[C]. Proceedings of 2012 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2012: 1006–1011.

    8. [8]

      JOSHI P, MUKHOPADHYAY D, and ROYCHOWDHURY D. Design and analysis of a robust and efficient block cipher using cellular automata[C]. Proceedings of the 20th International Conference on Advanced Information Networking and Applications, Vienna, Austria, 2006: 67–71.

    9. [9]

      MANZONI L and MARIOT L. Cellular automata pseudo-random number generators and their resistance to asynchrony[C]. Proceedings of the 13th International Conference on Cellular Automata for Research and Industry, Como, Italy, 2018: 428–437.

    10. [10]

      PICEK S, MARIOT L, YANG Bohan, et al. Design of S-boxes defined with cellular automata rules[C]. Proceedings of the Computing Frontiers Conference, Siena, Italy, 2017: 409–414.

    11. [11]

      MARIOT L, PICEK S, LEPORATI A, et al. Cellular automata based S-boxes[J]. Cryptography and Communications, 2019, 11(1): 41–62. doi: 10.1007/s12095-018-0311-8

    12. [12]

      BAO Zhenzhen, GUO Jian, LING San, et al. PEIGEN-a platform for evaluation, implementation, and generation of S-boxes[J]. IACR Transactions on Symmetric Cryptology, 2019, 2019(1): 330–394. doi: 10.13154/tosc.v2019.i1.330-394

    13. [13]

      GHOSHAL A, SADHUKHAN R, PATRANABIS S, et al. Lightweight and side-channel secure 4×4 S-boxes from cellular automata rules[J]. IACR Transactions on Symmetric Cryptology, 2018, 2018(3): 311–334. doi: 10.13154/tosc.v2018.i3.311-334

    14. [14]

      关杰, 黄俊君. 一类新的基于元胞自动机的S盒的密码学性质研究[J]. 通信学报, 2019, 40(5): 192–200.
      GUAN Jie and HUANG Junjun. Research on cryptographic properties of a new S-box based on cellular automaton[J]. Journal on Communications, 2019, 40(5): 192–200.

    15. [15]

      李倩男, 李云强, 蒋淑静, 等. Keccak类非线性变换的差分性质研究[J]. 通信学报, 2012, 33(9): 140–146.
      LI Qiannan, LI Yunqiang, JIANG Shujing, et al. Research on differential properties of Keccak-like nonlinear transform[J]. Journal on Communications, 2012, 33(9): 140–146.

    16. [16]

      李倩男. Keccak类杂凑函数研究[D]. [硕士论文], 信息工程大学, 2013: 30–36.
      LI Qiannan. Research on Keccak-like Hash Function[D]. [Master Dissertation], The PLA Information Engineering University, 2013: 30–36.

    17. [17]

      金晨辉, 郑浩然, 张少武, 等. 密码学[M]. 北京: 高等教育出版社, 2009: 30–36.
      JIN Chenhui, ZHENG Haoran, ZHANG Shaowu, et al. Cryptography[M]. Beijing: Higher Education Press, 2009: 30–36.

    1. [1]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报,

    2. [2]

      孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究. 电子与信息学报,

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  220
  • HTML全文浏览量:  266
文章相关
  • 通讯作者:  黄俊君, hjj7752@outlook.com
  • 收稿日期:  2019-07-29
  • 网络出版日期:  2020-04-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章