高级搜索

车联网中整合移动边缘计算与内容分发网络的移动性管理策略

张海波 程妍 刘开健 贺晓帆

引用本文: 张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略[J]. 电子与信息学报, doi: 10.11999/JEIT190571 shu
Citation:  Haibo ZHANG, Yan CHENG, Kaijian LIU, Xiaofan HE. The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190571 shu

车联网中整合移动边缘计算与内容分发网络的移动性管理策略

    作者简介: 张海波: 男,1979年生,副教授,研究方向为无线资源管理;
    程妍: 女,1994年生,硕士生,研究方向为移动边缘计算;
    刘开健: 女,1981年生,讲师,研究方向为最优化算法;
    贺晓帆: 男,1985年生,助理教授,研究方向为无线资源优化
    通讯作者: 程妍,2311837009@qq.com
  • 基金项目: 国家自然科学基金(61801065, 61601071);长江学者和创新团队发展计划基金资助项目(IRT16R72);重庆市基础与前沿项目(cstc2018jcyjAX0463)

摘要: 由于车载应用的普及和车辆数量的增加,路边基础设施的物理资源有限,当大量车辆接入车联网时能耗与时延同时增加,通过整合内容分发网络(CDN)和移动边缘计算(MEC)的框架可以降低时延与能耗。在车联网中,车辆移动性对云服务的连续性提出了重大挑战。因此,该文提出了移动性管理(MM)来处理该问题。采用开销选择的动态信道分配(ODCA)算法避免乒乓效应且减少车辆在小区间的切换时间。采用基于路边单元(RSU)调度的合作博弈算法进行虚拟机迁移并开发基于学习的价格控制机制,以有效地处理MEC的计算资源。仿真结果表明,所提算法相比于现有的算法能够提高资源利用率且减少开销。

English

    1. [1]

      ZHOU Siyu, NETALKAR P P, CHANG Yanan, et al. The MEC-based architecture design for low-latency and fast hand-off vehicular networking[C]. Proceedings of 2018 IEEE 88th Vehicular Technology Conference, Chicago, USA, 2018: 1–7. doi: 10.1109/VTCFall.2018.8690790.

    2. [2]

      BASTUG E, BENNIS M, MEDARD M, et al. Toward interconnected virtual reality: Opportunities, challenges, and enablers[J]. IEEE Communications Magazine, 2017, 55(6): 110–117. doi: 10.1109/MCOM.2017.1601089

    3. [3]

      LIN Mengdan and ZHAO Xuelin. Application research of neural network in vehicle target recognition and classification[C]. Proceedings of 2019 International Conference on Intelligent Transportation, Big Data & Smart City, Changsha, 2019: 5–8. doi: 10.1109/ICITBS.2019.00010.

    4. [4]

      CICIRELLI F, GUERRIERI A, SPEZZANO G, et al. Edge computing and social internet of things for large-scale smart environments development[J]. IEEE Internet of Things Journal, 2018, 5(4): 2557–2571. doi: 10.1109/JIOT.2017.2775739

    5. [5]

      YALA L, FRANGOUDIS P A, and KSENTINI A. QoE-aware computing resource allocation for CDN-as-a-service provision[C]. Proceedings of 2016 IEEE Global Communications Conference, Washington, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7842182.

    6. [6]

      LIU Jiayi, YANG Qinghai, and SIMON G. Congestion avoidance and load balancing in content placement and request redirection for mobile CDN[J]. IEEE/ACM Transactions on Networking, 2018, 26(2): 851–863. doi: 10.1109/TNET.2018.2804979

    7. [7]

      XU Jie, SUN Yuxuan, CHEN Lixing, et al. E2M2: Energy efficient mobility management in dense small cells with mobile edge computing[C]. Proceedings of 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7996855.

    8. [8]

      PENG Han, RAZI A, AFGHAH F, et al. A unified framework for joint mobility prediction and object profiling of drones in UAV networks[J]. Journal of Communications and Networks, 2018, 20(5): 434–442. doi: 10.1109/JCN.2018.000068

    9. [9]

      LIU Fangming, SHU Peng, and LUI J C S. AppATP: An energy conserving adaptive mobile-cloud transmission protocol[J]. IEEE Transactions on Computers, 2015, 64(11): 3051–3063. doi: 10.1109/TC.2015.2401032

    10. [10]

      XU Fei, LIU Fangming, LIU Linghui, et al. iAware: Making live migration of virtual machines interference-aware in the cloud[J]. IEEE Transactions on Computers, 2014, 63(12): 3012–3025. doi: 10.1109/TC.2013.185

    11. [11]

      CHEN Hongyang, WU Jianming, and SHIMOMURA T. New reference signal design for URLLC and eMBB multiplexing in new radio wireless communications[C]. Proceedings of 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1220–1225. doi: 10.1109/PIMRC.2018.8580882.

    12. [12]

      KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi: 10.1109/ACCESS.2019.2892180

    13. [13]

      WANG Chenmeng, YU F R, LIANG Chengchao, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432–7445. doi: 10.1109/TVT.2017.2672701

    14. [14]

      JOSHI G, VIG R, and SINGH S. DCA-based unimodal feature-level fusion of orthogonal moments for Indian sign language dataset[J]. IET Computer Vision, 2018, 12(5): 570–577. doi: 10.1049/iet-cvi.2017.0394

    15. [15]

      SUN Yuxuan, ZHOU Sheng, and XU Jie. EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2637–2646. doi: 10.1109/JSAC.2017.2760160

    16. [16]

      PLACHY J, BECVAR Z, and STRINATI E C. Dynamic resource allocation exploiting mobility prediction in mobile edge computing[C]. Proceedings of 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794955.

    17. [17]

      CHEN Xiaojing, NI Wei, COLLINGS I B, et al. Automated function placement and online optimization of network functions virtualization[J]. IEEE Transactions on Communications, 2019, 67(2): 1225–1237. doi: 10.1109/TCOMM.2018.2877336

    18. [18]

      FRANGOUDIS P A and KSENTINI A. Service migration versus service replication in Multi-access Edge Computing[C]. Proceedings of 2018 14th International Wireless Communications & Mobile Computing Conference, Limassol, Cyprus, 2018: 124–129. doi: 10.1109/IWCMC.2018.8450284.

    1. [1]

      张海波, 荆昆仑, 刘开健, 贺晓帆. 车联网中一种基于软件定义网络与移动边缘计算的卸载策略. 电子与信息学报,

    2. [2]

      史久根, 许辉亮, 陆立鹏. 软件定义网络中数据中心虚拟机迁移序列问题的研究. 电子与信息学报,

    3. [3]

      赵海涛, 朱银阳, 丁仪, 朱洪波. 车联网中基于移动边缘计算的内容感知分类卸载算法研究. 电子与信息学报,

    4. [4]

      张海波, 李虎, 陈善学, 贺晓帆. 超密集网络中基于移动边缘计算的任务卸载和资源优化. 电子与信息学报,

    5. [5]

      彭军, 王成龙, 蒋富, 顾欣, 牟玥玥, 刘伟荣. 一种车载服务的快速深度Q学习网络边云迁移策略. 电子与信息学报,

    6. [6]

      谢永, 李香, 张松松, 吴黎兵. 一种可证安全的车联网无证书聚合签名改进方案. 电子与信息学报,

    7. [7]

      邹虹, 高毅爽, 闫俊杰. 带有卸载时延感知的边缘云增强FiWi网络节能机制. 电子与信息学报,

    8. [8]

      张海波, 栾秋季, 朱江, 贺晓帆. 基于移动边缘计算的V2X任务卸载方案. 电子与信息学报,

    9. [9]

      赵星, 彭建华, 游伟. 基于Lyapunov优化的隐私感知计算卸载方法. 电子与信息学报,

    10. [10]

      钱志鸿, 田春生, 郭银景, 王雪. 智能网联交通系统的关键技术与发展. 电子与信息学报,

    11. [11]

      王汝言, 梁颖杰, 崔亚平. 车辆网络多平台卸载智能资源分配算法. 电子与信息学报,

    12. [12]

      田俊峰, 屈雪晴, 何欣枫, 李珍. 基于哈希图的虚拟机实时迁移方法. 电子与信息学报,

    13. [13]

      秦勇, 张军, 张涛. 低轨卫星网小区移动性对切换的影响. 电子与信息学报,

    14. [14]

      廖小飞, 李津生, 洪佩琳, 熊继平. 基于主动网络技术的移动IPv6切换方案. 电子与信息学报,

    15. [15]

      李云, 隆克平, 陈前斌, 邝育军. 基于MPLS的移动IP网络的移动性支持:平滑切换与路由优化. 电子与信息学报,

    16. [16]

      张海霞, 李腆腆, 李东阳, 刘文杰. 基于车辆行为分析的智能车联网关键技术研究. 电子与信息学报,

    17. [17]

      唐伦, 肖娇, 赵国繁, 杨友超, 陈前斌. 基于能效的NOMA蜂窝车联网动态资源分配算法. 电子与信息学报,

    18. [18]

      黄辰, 张伟, 李可维, 黄本雄, 戴彬. 基于层次化网络编码的无线物联网协作切换机制. 电子与信息学报,

    19. [19]

      肖琨, 吴诗其. 无线移动多媒体通信网的一种切换策略. 电子与信息学报,

    20. [20]

      王汝传, 黄良俊, 胡涛, 孙知信. 基于虚拟机技术的入侵检测系统攻击仿真平台的研究和实现. 电子与信息学报,

  • 图 1  系统模型图

    图 2  基站数目对切换时间的影响

    图 3  车辆用户的密度对平均时延的影响

    图 4  不同负载大小下总时延的变化情况

    图 5  迁移虚拟机的个数和资源利用率之间的关系

    图 6  虚拟机个数与服务失败率之间的关系

    表 1  开销选择的动态信道分配(ODCA)

     (1) 输入:${I_{{\rm{dd}}}}$, ${h_i}$, ${h_j}$, $v$, $c$, $\left( {X,Y} \right)$
     (2) 输出:$\left( {{X_{i,j}},{Y_{i,j}}} \right)$, $t_{i,j}^{{\rm{h}} * }$, ${\rm{RS}}{{\rm{U}}^ * }$
     (3) 初始化权值矩阵$\left( {X,Y} \right)$
     (4) $m \leftarrow 0$
     (5) while $m \le {I_{ {\rm{dd} } } }$
     (6) for $j = 1:M$
     (7) L辆车同时进行分布式计算,每个连接到RSU的V-UE仅报告
       未定期使用信道的开销
     (8) 如果许多用户同时改变其信道,可能导致乒乓效应,RSU可
       通过${a_{i,j,\mathop l\limits^ {\wedge} }} = 1|\mathop l\limits^ {\wedge} = \max \frac{{{p_{i,j,l}}{L_{i,j,l}}}}{{{\sigma ^2} + {\rm{I}}}}$改变信道
     (9) 根据式(10)计算开销,根据开销最小来选择最优、次最优、
       次优的3个RSU
     (10) V-UE实时上报其位置信息$\left( {X,Y} \right)$和功率损耗门限${P^{{\rm{th}}}}$,
       TCS根据式(5)计算切换位置$\left( {{X_{i,j}},{Y_{i,j}}} \right)$
     (11) 根据$\left( {{X_{i,j}},{Y_{i,j}}} \right)$和式(7)分别计算切换到3个RSU的时间,如
       果能使$t_{i,j}^{\rm{C}}$和$t_{i,j}^{\rm{h}}$最小,此${\rm{RS}}{{\rm{U}}^ * }$性能最优,且最优切换时间为
       $t_{i,j}^{{\rm{h}} * }$
     (12) endfor
     (13) endwhile
    下载: 导出CSV

    表 2  基于RSU调度的合作博弈算法

     (1) 输入:${{S}}$, $\alpha $, $\beta $, ${d_{i,j}}$, ${c_{i,j}}$, ${\rm{RS}}{{\rm{U}}^ * }$, ${I_{{\rm{dd}}}}$
     (2) 输出:${{A}}$
     (3) 初始化权值矩阵${{A}}$,${{S}}$
     (4)$m \leftarrow 0$
     (5) while $m \le {I_{ {\rm{dd} } } }$
     (6) for $j = 1:M$
     (7) $L$辆车同时进行分布式计算,利用梯度下降算法求出最优功
       率分配值$p_{i,j,l}^ * $
     (8) 根据式(14)判断是否迁移
     (9) 根据博弈论第2阶段计算出未迁移与迁移的收益
     (10) 根据行为${a_t}$观察下一时刻的状态${s_{t + 1}}$
     (11) 根据式(16)—式(18)出奖励函数,通过不断地学习,找到使
       奖励函数最大的策略
     (12) endfor
     (13) endwhile
    下载: 导出CSV

    表 3  模拟参数表

    参数数值
    输入数据的大小${d_{i,j}}$300~1600 KB
    噪声功率${\sigma ^2}$0.1~1 GHz
    MEC服务器CPU周期频率${f^{\rm{C}}}$6 GHz
    最大延迟容限${T^{{\rm{th}}}}$6 s
    迭代次数${I_{{\rm{dd}}}}$600
    最大传输功${P^{{\rm{max}}}}$23 dBm
    传输带宽$W$20 MHz
    任务执行时所需的CPU周期数${c_{i,j}}$0.1~1 GHz
    下载: 导出CSV
  • 加载中
图(6)表(3)
计量
  • PDF下载量:  11
  • 文章访问数:  416
  • HTML全文浏览量:  180
文章相关
  • 通讯作者:  程妍, 2311837009@qq.com
  • 收稿日期:  2019-07-29
  • 网络出版日期:  2020-03-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章