高级搜索

车联网中基于移动边缘计算的内容感知分类卸载算法研究

赵海涛 朱银阳 丁仪 朱洪波

引用本文: 赵海涛, 朱银阳, 丁仪, 朱洪波. 车联网中基于移动边缘计算的内容感知分类卸载算法研究[J]. 电子与信息学报, 2020, 42(1): 20-27. doi: 10.11999/JEIT190594 shu
Citation:  Haitao ZHAO, Yinyang ZHU, Yi DING, Hongbo ZHU. Research on Content-aware Classification Offloading Algorithm Based on Mobile Edge Calculation in the Internet of Vehicles[J]. Journal of Electronics and Information Technology, 2020, 42(1): 20-27. doi: 10.11999/JEIT190594 shu

车联网中基于移动边缘计算的内容感知分类卸载算法研究

    作者简介: 赵海涛: 男,1983年生,博士,副教授,研究方向为物联网与移动边缘计算;
    朱银阳: 男,1993年生,硕士,研究方向为移动边缘计算与资源优化;
    丁仪: 女,1995年生,硕士,研究方向为物联网路由优化和边缘计算;
    朱洪波: 男,1956年生,博士,教授,研究方向为移动通信与宽带无线技术、无线通信与电磁兼容
    通讯作者: 赵海涛,zhaoht@njupt.edu.cn
  • 基金项目: 国家自然科学基金(61771252),江苏省自然科学基金面上项目(BK20171444),江苏省高校重点自然科学研究重大项目(18KJA510005),江苏省“六大人才高峰”B类资助项目(DZXX-041),江苏省科协青年科技人才托举工程资助培养项目,江苏省研究生科研创新计划项目(KYCX19_0949)

摘要: 随着智能交通的快速发展,车辆终端产生大量需要实时处理的数据消息,而在有限资源上的竞争将会增加消息处理的时延,且对终端设备造成很大的能量消耗。针对时延和能量损耗的均衡关系,该文提出一种基于移动边缘计算(MEC)的内容感知分类卸载算法。首先根据层次分析法对安全消息进行优先级划分,然后建立时延和能量损耗的最优任务卸载模型,通过给时延和能量损耗赋予不同的权重系数构造关系模型,并利用拉格朗日松弛法将非凸问题转化为凸问题,从而结合次梯度投影法和贪婪算法得到问题的可行解。性能评估结果表明,该算法在一定程度上改善了消息处理时延和能量损耗。

English

    1. [1]

      LIN Kai, LI Chensi, FORTINO G, et al. Vehicle route selection based on game evolution in social internet of vehicles[J]. IEEE Internet of Things Journal, 2018, 5(4): 2423–2430. doi: 10.1109/JIOT.2018.2844215

    2. [2]

      MINH Q T, KAMIOKA E, and YAMADA S. CFC-ITS: Context-aware fog computing for intelligent transportation systems[J]. IT Professional, 2018, 20(6): 35–45. doi: 10.1109/MITP.2018.2876978

    3. [3]

      TANG Shanjiang, LEE B S, and HE Bingsheng. Fair resource allocation for data-intensive computing in the cloud[J]. IEEE Transactions on Services Computing, 2018, 11(1): 20–33. doi: 10.1109/TSC.2016.2531698

    4. [4]

      LUO Guiyang, YUAN Quan, ZHOU Haibo, et al. Cooperative vehicular content distribution in edge computing assisted 5G-VANET[J]. China Communications, 2018, 15(7): 1–17. doi: 10.1109/CC.2018.8424578

    5. [5]

      赵星, 彭建华. 基于Lyapunov优化的隐私感知计算卸载方法[J]. 电子与信息学报, 2020. doi: 10.11999/JEIT190170
      ZHAO Xing and PENG Jianhua. A privacy-aware computation offloading method based on Lyapunov optimization[J]. Journal of Electronics &Information Technology, 2020. doi: 10.11999/JEIT190170

    6. [6]

      TRINH H, CALYAM P, CHEMODANOV D, et al. Energy-aware mobile edge computing and routing for low-latency visual data processing[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2562–2577. doi: 10.1109/TMM.2018.2865661

    7. [7]

      张海波, 栾秋季, 朱江, 等. 车辆异构网中基于移动边缘计算的任务卸载与资源分配[J]. 物联网学报, 2018, 2(3): 36–43. doi: 10.11959/j.issn.2096-3750.2018.00062
      ZHANG Haibo, LUAN Qiuji, ZHU Jiang, et al. Task offloading and resource allocation in vehicle heterogeneous networks with MEC[J]. Chinese Journal on Internet of Things, 2018, 2(3): 36–43. doi: 10.11959/j.issn.2096-3750.2018.00062

    8. [8]

      TAO Xiaoyi, OTA K, DONG Mianxiong, et al. Performance guaranteed computation offloading for mobile-edge cloud computing[J]. IEEE Wireless Communications Letters, 2017, 6(6): 774–777. doi: 10.1109/LWC.2017.2740927

    9. [9]

      张海波, 李虎, 陈善学, 等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592
      ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592

    10. [10]

      ALAMEDDINE H A, SHARAFEDDINE S, SEBBAH S, et al. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 668–682. doi: 10.1109/JSAC.2019.2894306

    11. [11]

      GUO Shuaishuai, WU Dalei, ZHANG Haixia, et al. Resource modeling and scheduling for mobile edge computing: A service provider’s perspective[J]. IEEE Access, 2018, 6: 35611–35623. doi: 10.1109/ACCESS.2018.2851392

    12. [12]

      YOU Changsheng, HUANG Kaibin, CHAE H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397–1411. doi: 10.1109/TWC.2016.2633522

    13. [13]

      SAMANTA A and CHANG Zheng. Adaptive service offloading for revenue maximization in mobile edge computing with delay-constraint[J]. IEEE Internet of Things Journal, 2019, 6(2): 3864–3872. doi: 10.1109/JIOT.2019.2892398

    14. [14]

      ALNOMAN A and ANPALAGAN A. A dynamic priority service provision scheme for delay-sensitive applications in fog computing[C]. The 29th Biennial Symposium on Communications, Toronto, Canada, 2018: 1–5. doi: 10.1109/BSC.2018.8494691.

    15. [15]

      KIM G, JEON Y, and KIM J. A secure message service using the secure domain of a mobile security solution[C]. The 2014 International Conference on Information and Communication Technology Convergence, Busan, South Korea, 2014: 619–620. doi: 10.1109/ICTC.2014.6983230.

    16. [16]

      LI Junjie. Analyzing key factors in Taiwanese teachers teaching in China with analytic hierarchy process[J]. Journal of Interdisciplinary Mathematics, 2018, 21(2): 307–316. doi: 10.1080/09720502.2017.1420561

    17. [17]

      YUAN Jie and LI Xiaoyong. A reliable and lightweight trust computing mechanism for iot edge devices based on multi-source feedback information fusion[J]. IEEE Access, 2018, 6: 23626–23638. doi: 10.1109/ACCESS.2018.2831898

    18. [18]

      LING Ping, KONG Xiangrui, FANG Chen, et al. Novel distributed state estimation method for the AC-DC hybrid microgrid based on the Lagrangian relaxation method[J]. The Journal of Engineering, 2019, 2019(18): 4932–4936. doi: 10.1049/joe.2018.9329

    19. [19]

      RANI E and KAUR H. Study on fundamental usage of CloudSim simulator and algorithms of resource allocation in cloud computing[C]. The 8th International Conference on Computing, Communication and Networking Technologies, Delhi, India, 2017: 1–7. doi: 10.1109/ICCCNT.2017.8203998.

    1. [1]

      张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略. 电子与信息学报, 2020, 42(6): 1444-1451.

    2. [2]

      唐伦, 肖娇, 魏延南, 赵国繁, 陈前斌. 基于云雾混合计算的车联网联合资源分配算法. 电子与信息学报, 2020, 42(0): 1-8.

    3. [3]

      夏士超, 姚枝秀, 鲜永菊, 李云. 移动边缘计算中分布式异构任务卸载算法. 电子与信息学报, 2020, 41(0): 1-8.

    4. [4]

      王君珂, 印珏, 牛人杰, 任少康, 晁洁. DNA计算与DNA纳米技术. 电子与信息学报, 2020, 42(6): 1313-1325.

    5. [5]

      殷志祥, 唐震, 张强, 崔建中, 杨静, 王日晟, 赵寿为, 张居丽. 基于DNA折纸基底的与非门计算模型. 电子与信息学报, 2020, 42(6): 1355-1364.

    6. [6]

      陈容, 陈岚, WAHLAArfan Haider. 基于公式递推法的可变计算位宽的循环冗余校验设计与实现. 电子与信息学报, 2020, 42(5): 1261-1267.

    7. [7]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    8. [8]

      晋守博, 魏章志, 李耀红. 基于大通讯时滞的2阶多智能体系统的一致性分析. 电子与信息学报, 2020, 42(0): 1-6.

    9. [9]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法. 电子与信息学报, 2020, 42(0): 1-8.

    10. [10]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报, 2020, 42(5): 1102-1109.

    11. [11]

      杨书新, 梁文, 朱凯丽. 基于三级邻居的复杂网络节点影响力度量方法. 电子与信息学报, 2020, 42(5): 1140-1148.

    12. [12]

      孙军伟, 李智, 王延峰. 基于DNA链置换的三级联组合分子逻辑电路设计. 电子与信息学报, 2020, 42(6): 1401-1409.

  • 图 1  系统架构

    图 2  时延与安全消息数目的关系

    图 3  能量损耗与安全消息数目的关系

    图 4  时延和能量损耗的关系

    图 5  平均时延和消息优先级的关系

    表 1  任务队列调度算法

     (1) 输入消息的数据大小、消息所需的CPU周期、截止期限要求
       和消息的优先级别${b_j}$, Cj, TjPj
     (2) for 边缘服务器中的每个安全消息Mj
     (3) if pj=3,则
     (4)  将消息Mj放置在QH队列中;
     (5)  构建层次分析矩阵A$ = {({a_{ij}})_{n \times n}}$;
     (6)  计算影响因素所对应的权重矢量$U_r^k$;
     (7)  根据层次分析矩阵获得其权重所对应的特征值
         ${{\varLambda}} {\rm{ = [}}{\lambda _1}, {\lambda _2},{\lambda _3}{{\rm{]}}^{\rm{T}}}$;
     (8)  通过${\mathbf{PV} }{\rm{ = } }\varDelta \times \varLambda $得到每个消息的优先级向量,即消息的
         优先级值;
     (9)  根据PV值的大小在QH队列中按顺序排列;
     (10) else if pj=2,则
     (11)  将消息放置在QM队列中;
     (12)   重复步骤(4)—步骤(7);
     (13)   根据PV值的大小在QM队列中按顺序排列;
     (14) else if pj=1,则
     (15)   将消息Mj放置在QL队列中;
     (16)   重复步骤(4)—步骤(7);
     (17)   根据PV值的大小在QL队列中按顺序排列;
     (18) End if;
     (19) End for;
     (20) End
    下载: 导出CSV

    表 2  消息任务卸载策略

     (1) 输入:任务集$M$,边缘计算服务器集
       $I$,分配的通信带宽为wij,分配的计算速率由vij
     (2) 输出:分配系数$x$和目标函数值${z^ * }$;
     (3) for $i \in I$和$j \in M$;
     (4)  初始化拉格朗日乘数${\lambda ^0},{\lambda ^1},{\lambda ^2},{\lambda ^3}$,并根据式(11)求得传
         输功率${p_{i,j}}$;
     (5)  计算${W_{i,j}}$和${V_{i,j}}$,设${z^ * }$=0;
     (6)  if ${W_{i,j}} < {W_i}$和${V_{i,j}} < {V_i}$:
     (7)   $x$=1;
     (8)  else
     (9)   $x$=0;
     (10)  End if;
     (11)  利用$x$更新目标函数式(15);
     (12)  根据$g(\lambda )$的次梯度投影更新拉格朗日乘数,并利用
         KKT条件更新传输功率${p_{i,j}}$;
     (13) End for;
     (14) End。
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  87
  • 文章访问数:  2030
  • HTML全文浏览量:  629
文章相关
  • 通讯作者:  赵海涛, zhaoht@njupt.edu.cn
  • 收稿日期:  2019-08-06
  • 录用日期:  2019-11-14
  • 网络出版日期:  2019-11-28
  • 刊出日期:  2020-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章