高级搜索

车联网中基于移动边缘计算的内容感知分类卸载算法研究

赵海涛 朱银阳 丁仪 朱洪波

引用本文: 赵海涛, 朱银阳, 丁仪, 朱洪波. 车联网中基于移动边缘计算的内容感知分类卸载算法研究[J]. 电子与信息学报, doi: 10.11999/JEIT190594 shu
Citation:  Haitao ZHAO, Yinyang ZHU, Yi DING, Hongbo ZHU. Research on Content-aware Classification Offloading Algorithm Based on Mobile Edge Calculation in the Internet of Vehicles[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190594 shu

车联网中基于移动边缘计算的内容感知分类卸载算法研究

    作者简介: 赵海涛: 男,1983年生,博士,副教授,研究方向为物联网与移动边缘计算;
    朱银阳: 男,1993年生,硕士,研究方向为移动边缘计算与资源优化;
    丁仪: 女,1995年生,硕士,研究方向为物联网路由优化和边缘计算;
    朱洪波: 男,1956年生,博士,教授,研究方向为移动通信与宽带无线技术、无线通信与电磁兼容
    通讯作者: 赵海涛,zhaoht@njupt.edu.cn
  • 基金项目: 国家自然科学基金(61771252),江苏省自然科学基金面上项目(BK20171444),江苏省高校重点自然科学研究重大项目(18KJA510005),江苏省“六大人才高峰”B类资助项目(DZXX-041),江苏省科协青年科技人才托举工程资助培养项目,江苏省研究生科研创新计划项目(KYCX19_0949)

摘要: 随着智能交通的快速发展,车辆终端产生大量需要实时处理的数据消息,而在有限资源上的竞争将会增加消息处理的时延,且对终端设备造成很大的能量消耗。针对时延和能量损耗的均衡关系,该文提出一种基于移动边缘计算(MEC)的内容感知分类卸载算法。首先根据层次分析法对安全消息进行优先级划分,然后建立时延和能量损耗的最优任务卸载模型,通过给时延和能量损耗赋予不同的权重系数构造关系模型,并利用拉格朗日松弛法将非凸问题转化为凸问题,从而结合次梯度投影法和贪婪算法得到问题的可行解。性能评估结果表明,该算法在一定程度上改善了消息处理时延和能量损耗。

English

    1. [1]

      LIN Kai, LI Chensi, FORTINO G, et al. Vehicle route selection based on game evolution in social internet of vehicles[J]. IEEE Internet of Things Journal, 2018, 5(4): 2423–2430. doi: 10.1109/JIOT.2018.2844215

    2. [2]

      MINH Q T, KAMIOKA E, and YAMADA S. CFC-ITS: Context-aware fog computing for intelligent transportation systems[J]. IT Professional, 2018, 20(6): 35–45. doi: 10.1109/MITP.2018.2876978

    3. [3]

      TANG Shanjiang, LEE B S, and HE Bingsheng. Fair resource allocation for data-intensive computing in the cloud[J]. IEEE Transactions on Services Computing, 2018, 11(1): 20–33. doi: 10.1109/TSC.2016.2531698

    4. [4]

      LUO Guiyang, YUAN Quan, ZHOU Haibo, et al. Cooperative vehicular content distribution in edge computing assisted 5G-VANET[J]. China Communications, 2018, 15(7): 1–17. doi: 10.1109/CC.2018.8424578

    5. [5]

      赵星, 彭建华. 基于Lyapunov优化的隐私感知计算卸载方法[J]. 电子与信息学报, 2020. doi: 10.11999/JEIT190170
      ZHAO Xing and PENG Jianhua. A privacy-aware computation offloading method based on Lyapunov optimization[J]. Journal of Electronics &Information Technology, 2020. doi: 10.11999/JEIT190170

    6. [6]

      TRINH H, CALYAM P, CHEMODANOV D, et al. Energy-aware mobile edge computing and routing for low-latency visual data processing[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2562–2577. doi: 10.1109/TMM.2018.2865661

    7. [7]

      张海波, 栾秋季, 朱江, 等. 车辆异构网中基于移动边缘计算的任务卸载与资源分配[J]. 物联网学报, 2018, 2(3): 36–43. doi: 10.11959/j.issn.2096-3750.2018.00062
      ZHANG Haibo, LUAN Qiuji, ZHU Jiang, et al. Task offloading and resource allocation in vehicle heterogeneous networks with MEC[J]. Chinese Journal on Internet of Things, 2018, 2(3): 36–43. doi: 10.11959/j.issn.2096-3750.2018.00062

    8. [8]

      TAO Xiaoyi, OTA K, DONG Mianxiong, et al. Performance guaranteed computation offloading for mobile-edge cloud computing[J]. IEEE Wireless Communications Letters, 2017, 6(6): 774–777. doi: 10.1109/LWC.2017.2740927

    9. [9]

      张海波, 李虎, 陈善学, 等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592
      ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592

    10. [10]

      ALAMEDDINE H A, SHARAFEDDINE S, SEBBAH S, et al. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 668–682. doi: 10.1109/JSAC.2019.2894306

    11. [11]

      GUO Shuaishuai, WU Dalei, ZHANG Haixia, et al. Resource modeling and scheduling for mobile edge computing: A service provider’s perspective[J]. IEEE Access, 2018, 6: 35611–35623. doi: 10.1109/ACCESS.2018.2851392

    12. [12]

      YOU Changsheng, HUANG Kaibin, CHAE H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397–1411. doi: 10.1109/TWC.2016.2633522

    13. [13]

      SAMANTA A and CHANG Zheng. Adaptive service offloading for revenue maximization in mobile edge computing with delay-constraint[J]. IEEE Internet of Things Journal, 2019, 6(2): 3864–3872. doi: 10.1109/JIOT.2019.2892398

    14. [14]

      ALNOMAN A and ANPALAGAN A. A dynamic priority service provision scheme for delay-sensitive applications in fog computing[C]. The 29th Biennial Symposium on Communications, Toronto, Canada, 2018: 1–5. doi: 10.1109/BSC.2018.8494691.

    15. [15]

      KIM G, JEON Y, and KIM J. A secure message service using the secure domain of a mobile security solution[C]. The 2014 International Conference on Information and Communication Technology Convergence, Busan, South Korea, 2014: 619–620. doi: 10.1109/ICTC.2014.6983230.

    16. [16]

      LI Junjie. Analyzing key factors in Taiwanese teachers teaching in China with analytic hierarchy process[J]. Journal of Interdisciplinary Mathematics, 2018, 21(2): 307–316. doi: 10.1080/09720502.2017.1420561

    17. [17]

      YUAN Jie and LI Xiaoyong. A reliable and lightweight trust computing mechanism for iot edge devices based on multi-source feedback information fusion[J]. IEEE Access, 2018, 6: 23626–23638. doi: 10.1109/ACCESS.2018.2831898

    18. [18]

      LING Ping, KONG Xiangrui, FANG Chen, et al. Novel distributed state estimation method for the AC-DC hybrid microgrid based on the Lagrangian relaxation method[J]. The Journal of Engineering, 2019, 2019(18): 4932–4936. doi: 10.1049/joe.2018.9329

    19. [19]

      RANI E and KAUR H. Study on fundamental usage of CloudSim simulator and algorithms of resource allocation in cloud computing[C]. The 8th International Conference on Computing, Communication and Networking Technologies, Delhi, India, 2017: 1–7. doi: 10.1109/ICCCNT.2017.8203998.

    1. [1]

      张海波, 李虎, 陈善学, 贺晓帆. 超密集网络中基于移动边缘计算的任务卸载和资源优化. 电子与信息学报,

    2. [2]

      赵星, 彭建华, 游伟. 基于Lyapunov优化的隐私感知计算卸载方法. 电子与信息学报,

    3. [3]

      代美玲, 刘周斌, 郭少勇, 邵苏杰, 邱雪松. 基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制. 电子与信息学报,

    4. [4]

      邹虹, 高毅爽, 闫俊杰. 带有卸载时延感知的边缘云增强FiWi网络节能机制. 电子与信息学报,

    5. [5]

      张海波, 栾秋季, 朱江, 贺晓帆. 基于移动边缘计算的V2X任务卸载方案. 电子与信息学报,

    6. [6]

      张海波, 荆昆仑, 刘开健, 贺晓帆. 车联网中一种基于软件定义网络与移动边缘计算的卸载策略. 电子与信息学报,

    7. [7]

      王汝言, 梁颖杰, 崔亚平. 车辆网络多平台卸载智能资源分配算法. 电子与信息学报,

    8. [8]

      姚琳元, 陈颖, 宋飞, 张宏科. 基于时延的软件定义网络快速响应控制器部署. 电子与信息学报,

    9. [9]

      王练, 王萌, 任治豪, 白佳洁. D2D网络中基于立即可解网络编码的时延最小化重传方案. 电子与信息学报,

    10. [10]

      魏子翔, 崔嵬, 李霖, 吴爽, 吴嗣亮. 一种基于最大似然估计的合作目标多维参数跟踪算法. 电子与信息学报,

    11. [11]

      徐兴, 叶梧, 冯穗力. 基于多优先级时延预留的接入控制机制. 电子与信息学报,

    12. [12]

      郑恩明, 丘颜, 孙长瑜, 陈新华. 三元阵被动定位中时延差估计算法研究. 电子与信息学报,

    13. [13]

      崔维嘉, 张鹏, 巴斌. 基于循环匹配追踪的稀疏重构时延估计算法. 电子与信息学报,

    14. [14]

      王巍, 熊瑾煜, 朱中梁. CDMA信号码片内多径时延估计算法. 电子与信息学报,

    15. [15]

      王昭, 赵俊渭, 陈钟. 一种空间相关高斯噪声背景下的时变时延估计算法. 电子与信息学报,

    16. [16]

      霍建国, 程云鹏, 蔡跃明. 异步带限DS-CDMA系统中基于子空间的时延估计算法. 电子与信息学报,

    17. [17]

      崔维嘉, 张鹏, 巴斌. 基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法. 电子与信息学报,

    18. [18]

      程云鹏, 蔡跃明. 异步带限DS-CDMA系统在多径衰落信道下的子空间时延序贯估计算法. 电子与信息学报,

    19. [19]

      池凯凯, 祝驿楠, 邵奇可. 射频供能传感网能量源移动路径约束下时延最小化供电方案. 电子与信息学报,

    20. [20]

      杨奎武, 郭渊博, 马骏, 郑康锋. 基于网络编码的延迟容忍移动传感器网络低时延广播传输机制. 电子与信息学报,

  • 图 1  系统架构

    图 2  时延与安全消息数目的关系

    图 3  能量损耗与安全消息数目的关系

    图 4  时延和能量损耗的关系

    图 5  平均时延和消息优先级的关系

    表 1  任务队列调度算法

     (1) 输入消息的数据大小、消息所需的CPU周期、截止期限要求
       和消息的优先级别${b_j}$, Cj, TjPj
     (2) for 边缘服务器中的每个安全消息Mj
     (3) if pj=3,则
     (4)  将消息Mj放置在QH队列中;
     (5)  构建层次分析矩阵A$ = {({a_{ij}})_{n \times n}}$;
     (6)  计算影响因素所对应的权重矢量$U_r^k$;
     (7)  根据层次分析矩阵获得其权重所对应的特征值
         ${{\varLambda}} {\rm{ = [}}{\lambda _1}, {\lambda _2},{\lambda _3}{{\rm{]}}^{\rm{T}}}$;
     (8)  通过${\mathbf{PV} }{\rm{ = } }\varDelta \times \varLambda $得到每个消息的优先级向量,即消息的
         优先级值;
     (9)  根据PV值的大小在QH队列中按顺序排列;
     (10) else if pj=2,则
     (11)  将消息放置在QM队列中;
     (12)   重复步骤(4)—步骤(7);
     (13)   根据PV值的大小在QM队列中按顺序排列;
     (14) else if pj=1,则
     (15)   将消息Mj放置在QL队列中;
     (16)   重复步骤(4)—步骤(7);
     (17)   根据PV值的大小在QL队列中按顺序排列;
     (18) End if;
     (19) End for;
     (20) End
    下载: 导出CSV

    表 2  消息任务卸载策略

     (1) 输入:任务集$M$,边缘计算服务器集
       $I$,分配的通信带宽为wij,分配的计算速率由vij
     (2) 输出:分配系数$x$和目标函数值${z^ * }$;
     (3) for $i \in I$和$j \in M$;
     (4)  初始化拉格朗日乘数${\lambda ^0},{\lambda ^1},{\lambda ^2},{\lambda ^3}$,并根据式(11)求得传
         输功率${p_{i,j}}$;
     (5)  计算${W_{i,j}}$和${V_{i,j}}$,设${z^ * }$=0;
     (6)  if ${W_{i,j}} < {W_i}$和${V_{i,j}} < {V_i}$:
     (7)   $x$=1;
     (8)  else
     (9)   $x$=0;
     (10)  End if;
     (11)  利用$x$更新目标函数式(15);
     (12)  根据$g(\lambda )$的次梯度投影更新拉格朗日乘数,并利用
         KKT条件更新传输功率${p_{i,j}}$;
     (13) End for;
     (14) End。
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  32
  • 文章访问数:  389
  • HTML全文浏览量:  180
文章相关
  • 通讯作者:  赵海涛, zhaoht@njupt.edu.cn
  • 收稿日期:  2019-08-06
  • 录用日期:  2019-11-14
  • 网络出版日期:  2019-11-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章