高级搜索

基于正则图上量子游走的仲裁量子签名方案

施荣华 冯艳艳 石金晶

引用本文: 施荣华, 冯艳艳, 石金晶. 基于正则图上量子游走的仲裁量子签名方案[J]. 电子与信息学报, doi: 10.11999/JEIT190597 shu
Citation:  Ronghua SHI, Yanyan FENG, Jinjing SHI. Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190597 shu

基于正则图上量子游走的仲裁量子签名方案

    作者简介: 施荣华: 男,1963年生,教授,研究方向为量子密码协议、信息和网络安全;
    冯艳艳: 女,1991年生,博士生,研究方向为量子密码协议、量子游走及其应用;
    石金晶: 女,1986年生,副教授,研究方向为量子密码协议、量子神经网络及其应用
    通讯作者: 冯艳艳,fengyanyanhenu@163.com
  • 基金项目: 国家自然科学基金(61871407, 61872390, 61972418),中南大学中央高校基本科研业务费专项基金(2018zzts179)

摘要: 量子游走已经被提出可以用于瞬时地传输量子比特或多维量子态。根据量子游走的隐形传输模型,该文提出一种无需提前准备纠缠源的基于正则图上量子游走的仲裁量子签名算法。在初始化阶段,密钥是由量子密钥分发系统制备;在签名阶段,基于正则图上的量子游走隐形传输模型被用于转移信息副本密文从发送者到接收者。具体地,发送者编码要签名信息的密文在硬币态上,通过两步正则图上的量子游走,可以自动地产生用于量子隐形传输必须的纠缠态。发送者和接收者对制备的纠缠态的测量为签名生成和签名验证的凭据。在验证阶段,在仲裁的辅助下,验证者依照发送者的经典结果核实签名的有效性。此外,随机数和认证的公共板被引进阻止接收方在接收真正信息序列之前的存在性伪造攻击和否认攻击。安全性分析表明设计的算法满足签名者和接收者的不可抵赖以及任何人的不可伪造。讨论表明方案不能抗击发送者的抵赖攻击,相应的建议被给出。由于实验上已经证明量子游走可以在多个不同的物理系统上实现,因此该签名方案未来是可实现的。

English

    1. [1]

      NIELSEN M A and CHUANG I. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558. doi: 10.1119/1.1463744

    2. [2]

      SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303–332. doi: 10.1137/S0036144598347011

    3. [3]

      GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325–328. doi: 10.1103/PhysRevLett.79.325

    4. [4]

      GUO Ying, LIAO Qin, WANG Yijun, et al. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction[J]. Physical Review A, 2017, 95(3): 032304. doi: 10.1103/PhysRevA.95.032304

    5. [5]

      ZHANG Zhaoyuan, SHI Ronghua, ZENG Guihua, et al. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle[J]. Quantum Information Processing, 2018, 17(6): 133. doi: 10.1007/s11128-018-1903-0

    6. [6]

      MEIJER H and AKL S. Digital signature schemes for computer communication networks[J]. ACM SIGCOMM Computer Communication Review, 1981, 11(4): 37–41. doi: 10.1145/1013879.802657

    7. [7]

      ZENG Guihua and KEITEL C H. Arbitrated quantum-signature scheme[J]. Physical Review A, 2002, 65(4): 042312. doi: 10.1103/PhysRevA.65.042312

    8. [8]

      BARNUM H, CRÉPEAU C, GOTTESMAN D, et al. Authentication of quantum messages[C]. The 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, Canada, 2002: 449–458. doi: 10.1109/SFCS.2002.1181969.

    9. [9]

      LI Qin, CHAN W H, and LONG Dongyang. Arbitrated quantum signature scheme using Bell states[J]. Physical Review A, 2009, 79(5): 054307. doi: 10.1103/PhysRevA.79.054307

    10. [10]

      ZOU Xiangfu and QIU Daowen. Security analysis and improvements of arbitrated quantum signature schemes[J]. Physical Review A, 2010, 82(4): 042325. doi: 10.1103/PhysRevA.82.042325

    11. [11]

      GAO Fei, QIN Sujuan, GUO Fenzhuo, et al. Cryptanalysis of the arbitrated quantum signature protocols[J]. Physical Review A, 2011, 84(2): 022344. doi: 10.1103/PhysRevA.84.022344

    12. [12]

      CHOI J W, CHANG K Y, and HONG D. Security problem on arbitrated quantum signature schemes[J]. Physical Review A, 2011, 84(6): 062330. doi: 10.1103/PhysRevA.84.062330

    13. [13]

      张骏, 吴吉义. 可证明安全高效的仲裁量子签名方案[J]. 北京邮电大学学报, 2013, 36(2): 113–116.
      ZHANG Jun and WU Jiyi. Provable secure efficient arbitrated quantum signature scheme[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 113–116.

    14. [14]

      LI Fengguang and SHI Jianhong. An arbitrated quantum signature protocol based on the chained CNOT operations encryption[J]. Quantum Information Processing, 2015, 14(6): 2171–2181. doi: 10.1007/s1112

    15. [15]

      YANG Yuguang, LEI He, LIU Zhichao, et al. Arbitrated quantum signature scheme based on cluster states[J]. Quantum Information Processing, 2016, 15(6): 2487–2497. doi: 10.1007/s11128-016-1293-0

    16. [16]

      ZHANG Long, SUN Hongwei, ZHANG Kejia, et al. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption[J]. Quantum Information Processing, 2017, 16(3): 70. doi: 10.1007/s11128-017-1531-0

    17. [17]

      ZHANG Yingying and ZENG Jiwen. An improved arbitrated quantum scheme with Bell states[J]. International Journal of Theoretical Physics, 2018, 57(4): 994–1003. doi: 10.1007/s10773-017-3632-z

    18. [18]

      GUO Ying, FENG Yanyan, HUANG Dazu, et al. Arbitrated quantum signature scheme with continuous-variable coherent states[J]. International Journal of Theoretical Physics, 2016, 55(4): 2290–2302. doi: 10.1007/s10773-015-2867-9

    19. [19]

      FENG Yanyan, SHI Ronghua, and GUO Ying. Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states[J]. Chinese Physics B, 2018, 27(2): 020302. doi: 10.1088/1674-1056/27/2/020302

    20. [20]

      LOU Xiaoping, LONG Hu, TANG Wensheng, et al. Continuous-variable arbitrated quantum signature based on dense coding and teleportation[J]. IEEE Access, 2019, 7: 85719–85726. doi: 10.1109/ACCESS.2019.2925635

    21. [21]

      BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13): 1895–1899. doi: 10.1103/PhysRevLett.70.1895

    22. [22]

      REN Lijie, HE Guangqiang, and ZENG Guihua. Universal teleportation via continuous-variable graph states[J]. Physical Review A, 2008, 78(4): 042302. doi: 10.1103/PhysRevA.78.042302

    23. [23]

      AHARONOV Y, DAVIDOVICH L, and ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687–1690. doi: 10.1103/PhysRevA.48.1687

    24. [24]

      MEYER D A. From quantum cellular automata to quantum lattice gases[J]. Journal of Statistical Physics, 1996, 85(5/6): 551–574. doi: 10.1007/BF02199356

    25. [25]

      FARHI E and GUTMANN S. Quantum computation and decision trees[J]. Physical Review A, 1998, 58(2): 915–928. doi: 10.1103/PhysRevA.58.915

    26. [26]

      CHILDS A M and Goldstone J. Spatial search by quantum walk[J]. Physical Review A, 2004, 70(2): 022314. doi: 10.1103/PhysRevA.70.022314

    27. [27]

      AARONSON S and SHI Yaoyun. Quantum lower bounds for the collision and the element distinctness problems[J]. Journal of the ACM, 2004, 51(4): 595–605. doi: 10.1145/1008731.1008735

    28. [28]

      DOUGLAS B L and WANG J B. A classical approach to the graph isomorphism problem using quantum walks[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(7): 075303. doi: 10.1088/1751-8113/41/7/075303

    29. [29]

      DU Jiangfeng, LI Hui, XU Xiaodong, et al. Experimental implementation of the quantum random-walk algorithm[J]. Physical Review A, 2003, 67(4): 042316. doi: 10.1103/PhysRevA.67.042316

    30. [30]

      SCHMITZ H, MATJESCHK R, SCHNEIDER C, et al. Quantum walk of a trapped ion in phase space[J]. Physical Review Letter, 2009, 103(9): 090504. doi: 10.1103/PhysRevLett.103.090504

    31. [31]

      PERUZZO A, LOBINO M, MATTHEWS J C F, et al. Quantum walks of correlated photons[J]. Science, 2010, 329(5998): 1500–1503. doi: 10.1126/science.1193515

    32. [32]

      WANG Yu, SHANG Yun, and XUE Peng. Generalized teleportation by quantum walks[J]. Quantum Information Processing, 2017, 16(9): 221. doi: 10.1007/s11128-017-1675-y

    33. [33]

      SHANG Yun, WANG Yu, LI Meng, et al. Quantum communication protocols by quantum walks with two coins[J]. EPL (Europhysics Letters) , 2019, 124(6): 60009. doi: 10.1209/0295-5075/124/60009

    34. [34]

      AHARONOV D, AMBAINIS A, KEMPE J, et al. Quantum walks on graphs[C]. The 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 2001: 50–59. doi: 10.1145/380752.380758.

    35. [35]

      BRUN T A, CARTERET H A, and AMBAINIS A. Quantum walks driven by many coins[J]. Physical Review A, 2003, 67(5): 052317. doi: 10.1103/PhysRevA.67.052317

    36. [36]

      BUHRMAN H, CLEVE R, WATROUS J, et al. Quantum fingerprinting[J]. Physical Review Letters, 2001, 87(16): 167902. doi: 10.1103/PhysRevLett.87.167902

    37. [37]

      PÉREZ E, CURTY M, SANTOS D J, et al. Quantum authentication with unitary coding sets[J]. Journal of Modern Optics, 2003, 50(6/7): 1035–1047. doi: 10.1080/09500340308234550

    1. [1]

      赵军, 曾学文, 郭志川. 支持国产密码算法的高速PCIe密码卡的设计与实现. 电子与信息学报,

    2. [2]

      戴紫彬, 尹安琪, 曲彤洲, 南龙梅. 面向众核密码处理器的高效负载均衡技术. 电子与信息学报,

    3. [3]

      牛淑芬, 杨喜艳, 王彩芬, 田苗, 杜小妮. 基于异构密码系统的混合群组签密方案. 电子与信息学报,

    4. [4]

      谢敏, 曾琦雅. 轻量级分组密码算法ESF的相关密钥不可能差分分析. 电子与信息学报,

    5. [5]

      韦永壮, 史佳利, 李灵琛. LiCi分组密码算法的不可能差分分析. 电子与信息学报,

    6. [6]

      黄一才, 李森森, 鲍博武, 郁滨. 面向ZigBee网络节点安全定位的消息签名方案. 电子与信息学报,

    7. [7]

      王彩芬, 许钦百, 刘超, 成玉丹, 赵冰. 无证书公钥密码体制→传统公钥基础设施异构环境下部分盲签密方案. 电子与信息学报,

    8. [8]

      曾孝平, 余丰, 简鑫, 李诗琪, 杜得荣, 蒋欣, 方伟. 基于多点协作联合传输的超密集组网性能分析. 电子与信息学报,

    9. [9]

      屠袁飞, 苏清健, 杨庚. 一种适用于工业控制系统的加密传输方案. 电子与信息学报,

    10. [10]

      达新宇, 王浩波, 罗章凯, 胡航, 倪磊, 潘钰. 基于双层多参数加权类分数阶傅里叶变换的双极化卫星安全传输方案. 电子与信息学报,

    11. [11]

      谢显中, 黎佳, 黄倩, 陈杰. 机器类通信中基于NOMA短编码块传输的高可靠低迟延无线资源分配优化方案. 电子与信息学报,

    12. [12]

      王凯, 李星, 兰巨龙, 卫红权, 刘树新. 一种基于资源传输路径拓扑有效性的链路预测方法. 电子与信息学报,

    13. [13]

      杨小东, 麻婷春, 陈春霖, 王晋利, 王彩芬. 面向车载自组网的无证书聚合签名方案的安全性分析与改进. 电子与信息学报,

  • 图 1  基于多个硬币的量子游走线路原理图

    图 2  基于两个硬币量子游走的隐形传输线路原理图

    图 3  比较两个未知量子态的线路原理图

    图 4  基于$d$正则图量子游走的AQS算法的原理图

    图 5  n分别取50, 100, 150 3种情况下Alice成功抵赖签名的概率${\rm{P}}{{\rm{r}}_{{\rm{disavowal}}}}$

  • 加载中
图(5)
计量
  • PDF下载量:  6
  • 文章访问数:  111
  • HTML全文浏览量:  70
文章相关
  • 通讯作者:  冯艳艳, fengyanyanhenu@163.com
  • 收稿日期:  2019-08-07
  • 录用日期:  2019-10-29
  • 网络出版日期:  2019-11-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章