序号 | 昆虫名称 | 体长(mm) | 体宽(mm) | 体重(mg) |
1 | 未辨识飞蛾1#1 | 11.1 | 2.8 | 25.6 |
2 | 未辨识飞蛾1#2 | 15.0 | 3.0 | 35.5 |
3 | 枯叶蛾#1 | 16.7 | 4.0 | 72.2 |
4 | 枯叶蛾#2 | 17.9 | 5.0 | 105.0 |
5 | 小地老虎 | 19.5 | 4.9 | 218.4 |
6 | 霜天蛾 | 34.8 | 9.1 | 319.7 |
7 | 未辨识飞蛾2 | 22.9 | 6.8 | 400.7 |
8 | 甘薯天蛾#1 | 38.9 | 9.0 | 530.1 |
9 | 甘薯天蛾#2 | 40.0 | 12.4 | 680.4 |
10 | 甘薯天蛾#3 | 36.8 | 10.2 | 935.3 |

Citation: Cheng HU, Linlin FANG, Rui WANG, Chao ZHOU, Weidong LI, Fan ZHANG, Tianjiao LANG, Teng LONG. Analysis of Insect RCS Characteristics[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190611

昆虫雷达散射截面积特性分析
-
关键词:
- 昆虫雷达
- / 昆虫雷达散射截面积特性
- / 电磁仿真
- / 雷达散射截面积起伏
English
Analysis of Insect RCS Characteristics
-
-
[1]
HU Gao, LIM K S, HORVITZ N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016, 354(6319): 1584–1587. doi: 10.1126/science.aah4379
-
[2]
吴秋琳, 姜玉英, 胡高, 等. 中国热带和南亚热带地区草地贪夜蛾春夏两季迁飞轨迹的分析[J]. 植物保护, 2019, 45(3): 1–9.
WU Qiulin, JIANG Yuying, HU Gao, et al. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China[J]. Plant Protection, 2019, 45(3): 1–9. -
[3]
HU Cheng, WANG Yixuan, WANG Rui, et al. An improved radar detection and tracking method for small UAV under clutter environment[J]. Science China Information Sciences, 2019, 62(2): 29306. doi: 10.1007/s11432-018-9598-x
-
[4]
ZHOU Chao, WANG Rui, and HU Cheng. Equivalent point estimation for small target groups tracking based on MLE[J]. Science China Information Sciences, 2019. doi: 10.1007/s11432-019-1518-x
-
[5]
SMITH A D, RILEY J R, and GREGORY R D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340(1294): 393–404. doi: 10.1098/rstb.1993.0081
-
[6]
GLOVER K M, HARDY K R, LANDRY C R, et al. Radar characteristics of known insects in free flight[C]. 12th Conference on Radar Meteorology, Oklahoma, USA, 1966: 254–258.
-
[7]
RILEY J R. Angular and temporal variations in the radar cross-sections of insects[J]. Proceedings of the Institution of Electrical Engineers, 1973, 120(10): 1229–1232. doi: 10.1049/piee.1973.0251
-
[8]
RILEY J R, VAUGHN C R, WOLF W, et al. Quantitative analysis of radar returns from insects[C]. A Workshop Held at NASA Wallops Flight Center, Wallops Island, USA, 1978: 131–158.
-
[9]
RILEY J R. Radar cross section of insects[J]. Proceedings of the IEEE, 1985, 73(2): 228–232. doi: 10.1109/PROC.1985.13135
-
[10]
ALDHOUS A C. An investigation of the polarisation dependence of insect radar cross sections at constant aspect[D]. [Ph.D. dissertation], Cranfield University, 1989.
-
[11]
MURTON R K and WRIGHT E N. The Problems of Birds as Pests[M]. New York: Academic Press, 1968: 53–86.
-
[12]
SCHAEFER G W. Radar observations of insect flight[C]. Insect Flight Symposia of the Royal Entomological Society, London, 1976: 157–197.
-
[13]
MIRKOVIC D, STEPANIAN P M, WAINWRIGHT C E, et al. Characterizing animal anatomy and internal composition for electromagnetic modelling in radar entomology[J]. Remote Sensing in Ecology and Conservation, 2019, 5(2): 169–179. doi: 10.1002/rse2.94
-
[14]
WANG Rui, HU Cheng, LIU Changjiang, et al. Migratory insect multifrequency radar cross sections for morphological parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3450–3461. doi: 10.1109/TGRS.2018.2884926
-
[15]
HU Cheng, LI Wenqing, WANG Rui, et al. Insect flight speed estimation analysis based on a full-polarization radar[J]. Science China Information Sciences, 2018, 61(10): 109306. doi: 10.1007/s11432-018-9484-2
-
[16]
WANG Rui, HU Cheng, FU Xiaowei, et al. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar[J]. Scientific Reports, 2017, 7(1): 1396. doi: 10.1038/s41598-017-01616-4
-
[17]
HU Cheng, KONG Shaoyang, WANG Rui, et al. Identification of migratory insects from their physical features using a decision-tree support vector machine and its application to radar entomology[J]. Scientific Reports, 2018, 8(1): 5449. doi: 10.1038/S41598-018-23825-1
-
[18]
汪兵. 非独立同分布起伏目标建模与检测算法研究[D].[博士论文], 电子科技大学, 2017.
WANG Bing. Research on modeling and the detection algorithm of non-ⅡD fluctuation targets[D].[Ph.D. dissertation], University of Electronic Science and Technology of China, 2017. -
[19]
SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561
-
[20]
WEINSTOCK W. Target cross section models for radar system analysis[D]. [Ph.D. dissertation], University of Pennsylvania, 1964.
-
[21]
LEWINSKI D. Nonstationary probabilistic target and clutter scattering models[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(3): 490–498. doi: 10.1109/TAP.1983.1143067
-
[22]
SHNIDMAN D A. Expanded Swerling target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059–1069. doi: 10.1109/TAES.2003.1238757
-
[23]
ROSE M, HAIMOV S, and MOORE R K. Optimum detection of Weibull-distributed targets[C]. OCEANS '93, Victoria, Canada, 1993: Ⅱ/5-Ⅱ/9. doi: 10.1109/OCEANS.1993.326056.
-
[24]
SHNIDMAN D A. Calculation of probability of detection for log-normal target fluctuations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 172–174. doi: 10.1109/7.68161
-
[25]
SLOCUMB B J and KLUSMAN Ⅲ M E. A multiple model SNR/RCS likelihood ratio score for radar-based feature-aided tracking[C]. The SPIE 5913, Signal and Data Processing of Small Targets 2005, San Diego, USA, 2005: 540–551. doi: 10.1117/12.615288.
-
[26]
SHI Weiqiang, SHI Xiaowei, and XU Le. Radar Cross Section (RCS) statistical characterization using Weibull distribution[J]. Microwave and Optical Technology Letters, 2013, 55(6): 1355–1358. doi: 10.1002/mop.27557
-
[27]
林刚, 许家栋. 目标RCS动态数据的分布特征研究[J]. 现代雷达, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006
LIN Gang and XU Jiadong. Study of the statistical characterization of targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006 -
[28]
史伟强, 徐乐, 史小卫, 等. 基于完备对数正态分布模型的隐形飞行器动态RCS统计特性研究[J]. 电子与信息学报, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161
SHI Weiqiang, XU Le, SHI Xiaowei, et al. Dynamic RCS statistic characterization of stealth aircraft using complete lognormal distribution[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161 -
[29]
沈鹏. 海面舰船RCS起伏分布模型研究[J]. 指挥控制与仿真, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008
SHEN Peng. RCS fluctuation distribution models research of Ship Target on Sea[J]. Command Control &Simulation, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008 -
[30]
SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 2008.
-
[31]
HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1755–1759. doi: 10.1109/LGRS.2017.2733719
-
[32]
HOBBS S E and ALDHOUS A C. Insect ventral radar cross-section polarisation dependence measurements for radar entomology[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 502–508. doi: 10.1049/ip-rsn:20060019
-
[33]
VAUGHN C R. Birds and insects as radar targets: A review[J]. Proceedings of the IEEE, 1985, 73(2): 205–227. doi: 10.1109/proc.1985.13134
-
[34]
MIRKOVIC D, STEPANIAN P M, KELLY J F, et al. Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms[J]. Scientific Reports, 2016, 6(1): 35637. doi: 10.1038/srep35637
-
[35]
NELSON S O, BARTLEY P G JR, and LAWRENCE K C. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control[J]. Transactions of the ASAE, 1998, 41(3): 685–692. doi: 10.13031/2013.17194
-
[36]
HOBBS S, ALLSOPP K, and WOLF W. Signal analysis for an entomological radar with a vertical Nutating beam[R]. College of Aeronautics Report 9919, 2003.
-
[37]
DOWDY P C. RCS probability distribution function modeling of a fluctuating target[C]. The 1991 IEEE National Radar Conference, Los Angeles, USA, 1991: 164–168. doi: 10.1109/NRC.1991.114752.
-
[38]
RILEY J R. Collective orientation in night-flying insects[J]. Nature, 1975, 253(5487): 113–114. doi: 10.1038/253113a0
-
[39]
CHAPMAN J W, NESBIT R L, BURGIN L E, et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects[J]. Science, 2010, 327(5966): 682–685. doi: 10.1126/science.1182990
-
[40]
HARMAN I T and DRAKE V A. Insect monitoring radar: Analytical time-domain algorithm for retrieving trajectory and target parameters[J]. Computers and Electronics in Agriculture, 2004, 43(1): 23–41. doi: 10.1016/j.compag.2003.08.005
-
[41]
HU Cheng, LI Weidong, WANG Rui, et al. Insect biological parameter estimation based on the invariant target parameters of the scattering matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6212–6225. doi: 10.1109/TGRS.2019.2904869
-
[42]
CHAPMAN J W, SMITH A D, WOIWOD I P, et al. Development of vertical-looking radar technology for monitoring insect migration[J]. Computers and Electronics in Agriculture, 2002, 35(2/3): 95–110. doi: 10.1016/s0168-1699(02)00013-3
-
[43]
DRAKE V A, CHAPMAN J W, LIM K S, et al. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form[J]. International Journal of Remote Sensing, 2017, 38(18): 5022–5044. doi: 10.1080/01431161.2017.1320453
-
[44]
HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect body length extraction based on the invariant target parameters[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3. doi: 10.1109/COMPEM.2018.8496592.
-
[1]
-
表 1 实验昆虫样本信息
表 2 介质密度及相对介电常数
介质 密度ρ(g/cm3) X波段相对介电常数 水 1.000 60.30-33.10j 脊髓 1.038 23.80-10.84j 干皮肤 1.045 31.30-14.41j 壳质与血淋巴混合物 1.260 34.30-18.60j 表 3 等尺寸椭球体模型质量百分比误差(%)
昆虫序号 水 脊髓 干皮肤 壳质混合物 1 –77.99 –84.75 –86.00 –124.27 2 –99.12 –106.68 –108.08 –150.88 3 –93.78 –101.14 –102.49 –144.16 4 –123.15 –131.63 –133.19 –181.17 5 –12.25 –16.51 –17.30 –41.43 6 –371.97 –389.91 –393.21 –494.69 7 –38.37 –43.63 –44.59 –74.34 8 –211.23 –223.05 –225.23 –292.14 9 –373.30 –391.29 –394.60 –496.36 10 –114.34 –122.48 –123.98 –170.06 平均误差 –151.55 –161.11 –162.87 –216.95 表 4 等质量椭球体模型体长百分比误差(%)
昆虫序号 水 脊髓 干皮肤 壳质混合物 1 17.48 18.50 18.69 23.60 2 20.51 21.49 21.67 26.41 3 19.79 20.78 20.96 25.74 4 23.48 24.42 24.59 29.15 5 3.78 4.97 5.18 10.91 6 40.38 41.12 41.25 44.80 7 10.26 11.37 11.57 16.91 8 31.51 32.35 32.51 36.59 9 40.44 41.18 41.31 44.86 10 22.44 23.40 23.57 28.19 平均误差 23.01 23.96 24.13 28.72 表 5 三轴椭球体模型高度百分比误差(%)
昆虫序号 水 脊髓 干皮肤 壳质混合物 1 43.82 45.87 46.23 55.41 2 49.78 51.62 51.94 60.14 3 48.39 50.28 50.62 59.04 4 55.19 56.83 57.12 64.43 5 10.91 14.17 14.75 29.29 6 78.81 79.59 79.72 83.18 7 27.73 30.37 30.84 42.64 8 67.87 69.05 69.25 74.50 9 78.87 79.65 79.78 83.23 10 53.34 55.05 55.35 62.97 平均误差 51.47 53.25 53.56 61.49 表 6 等质量椭球体模型RCS百分比误差(%)
介质 极化方向平行
体轴RCS极化方向垂直
体轴RCS水 224.3 22.1 脊髓 65.9 19.7 干皮肤 101.2 6.7 壳质与血淋巴混合物 68.8 32.8 表 7 分布函数表达式
分布函数 表达式 参数 ${\chi ^2}$ $p\left( \sigma \right) = \dfrac{m}{ {\varGamma \left( m \right)\bar \sigma } }{\left[ {\dfrac{ {m\sigma } }{ {\bar \sigma } } } \right]^{m - 1} }\exp \left[ {\dfrac{ { - m\sigma } }{ {\bar \sigma } } } \right]$ $\bar \sigma $为平均值,$2m$为自由度。 Log-normal $p\left( \sigma \right) = \dfrac{1}{{\sigma \sqrt {4{\pi }\ln \rho } }}\exp \left\{ {\dfrac{{ - {{\left( {\ln \sigma - {\sigma _0}} \right)}^2}}}{{4\ln \rho }}} \right\}$ ${\sigma _0}$为中值,$\rho $为平均中值比 Gamma $p\left( \sigma \right) = \dfrac{1}{ { {\beta ^\alpha }\varGamma \left( \alpha \right)} }{\sigma ^{\alpha - 1} }\exp \left( { - \dfrac{\sigma }{\beta } } \right)$ $\alpha $是形状参数,$\beta $是尺度参数 Weibull $p\left( \sigma \right) = \dfrac{b}{a}{\left( {\dfrac{\sigma }{a}} \right)^{b - 1}}\exp \left( { - {{\left( {\dfrac{\sigma }{a}} \right)}^b}} \right)$ $a$是尺度参数,$b$是形状参数 表 8 昆虫RCS起伏PDF分布拟合误差
昆虫序号 RCS起伏
样本点数Log-normal ${\chi ^2}$ Gamma Weibull 1 1500 0.0812 0.3870 0.0747 0.0960 2 1250 0.1288 0.5774 0.1204 0.1307 3 1280 0.0724 0.7709 0.0710 0.1102 4 1340 0.0992 0.5652 0.0960 0.1262 5 1460 0.0861 0.3555 0.0765 0.0903 均值 0.0935 0.5312 0.0877 0.1107 表 9 昆虫RCS起伏PDF分布K-S检验参数D值
昆虫序号 RCS起伏
样本点数Log-normal χ2 Gamma Weibull 1 1500 0.0221 0.2141 0.0181 0.0370 2 1250 0.0306 0.2045 0.0169 0.0266 3 1280 0.0195 0.2094 0.0096 0.0342 4 1340 0.0211 0.1831 0.0181 0.0356 5 1460 0.0258 0.1583 0.0145 0.0271 均值 0.0238 0.1939 0.0154 0.0321 -