高级搜索

昆虫雷达散射截面积特性分析

胡程 方琳琳 王锐 周超 李卫东 张帆 郎添娇 龙腾

引用本文: 胡程, 方琳琳, 王锐, 周超, 李卫东, 张帆, 郎添娇, 龙腾. 昆虫雷达散射截面积特性分析[J]. 电子与信息学报, doi: 10.11999/JEIT190611 shu
Citation:  Cheng HU, Linlin FANG, Rui WANG, Chao ZHOU, Weidong LI, Fan ZHANG, Tianjiao LANG, Teng LONG. Analysis of Insect RCS Characteristics[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190611 shu

昆虫雷达散射截面积特性分析

    作者简介: 胡程: 男,1981年生,研究员,博士生导师,研究方向为新体制合成孔径雷达系统与信号处理、生物探测雷达系统与信息处理技术等;
    方琳琳: 女,1993年生,博士生,研究方向为雷达目标检测跟踪算法;
    王锐: 男,1985年生,副教授,博士生导师,研究方向为昆虫雷达信号处理等;
    周超: 男,1987年生,博士后,研究方向为雷达目标检测跟踪算法;
    李卫东: 男,1991年生,博士生,研究方向为昆虫雷达极化信号处理;
    张帆: 男,1996年生,博士生,研究方向为空中生物目标电磁仿真;
    郎添娇: 女,1994年生,硕士生,研究方向为空中生物目标电磁仿真;
    龙腾: 男,1968年生,教授,研究方向为实时信号与信息处理
    通讯作者: 王锐,bit.wangrui@gmail.com
  • 基金项目: 国家重大科研仪器研制项目(31727901)

摘要: 昆虫雷达是观测昆虫迁飞最有效的工具。研究昆虫的雷达散射截面积(RCS)特性对于昆虫雷达目标识别有着重要意义。该文将分析昆虫的静态RCS特性和动态RCS特性。首先,基于实测的X波段全极化昆虫RCS数据,分析昆虫的静态RCS特性,包括水平和垂直极化RCS随体重变化规律以及昆虫极化方向图随体重的变化规律。其次,总结当前通过电磁仿真研究昆虫RCS特性所用到的介质和几何形状模型,并对比了水、脊髓、干皮肤和壳质与血淋巴混合物4种介质和等体型扁长椭球体、等质量扁长椭球体和三轴椭球体3种几何模型组成的12种介质模型,经过电磁仿真结果与实测数据相对比发现脊髓介质等质量扁长椭球体模型与实测昆虫RCS特性最接近。然后,基于Ku波段高分辨昆虫雷达外场实测昆虫回波数据,分析了昆虫动态RCS的起伏特性,将实测昆虫动态RCS起伏数据与4种经典的RCS起伏分布模型χ2, Log-normal, Weibull和Gamma分布分别进行了拟合分析,从最小二乘拟合误差和拟合优度检验结果可以看出,相比于其他3种模型,Gamma分布可以较好地描述昆虫目标RCS起伏的统计特性。最后,综述了昆虫RCS特性在昆虫雷达测量昆虫朝向、体重等参数测量的应用。

English

    1. [1]

      HU Gao, LIM K S, HORVITZ N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016, 354(6319): 1584–1587. doi: 10.1126/science.aah4379

    2. [2]

      吴秋琳, 姜玉英, 胡高, 等. 中国热带和南亚热带地区草地贪夜蛾春夏两季迁飞轨迹的分析[J]. 植物保护, 2019, 45(3): 1–9.
      WU Qiulin, JIANG Yuying, HU Gao, et al. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China[J]. Plant Protection, 2019, 45(3): 1–9.

    3. [3]

      HU Cheng, WANG Yixuan, WANG Rui, et al. An improved radar detection and tracking method for small UAV under clutter environment[J]. Science China Information Sciences, 2019, 62(2): 29306. doi: 10.1007/s11432-018-9598-x

    4. [4]

      ZHOU Chao, WANG Rui, and HU Cheng. Equivalent point estimation for small target groups tracking based on MLE[J]. Science China Information Sciences, 2019. doi: 10.1007/s11432-019-1518-x

    5. [5]

      SMITH A D, RILEY J R, and GREGORY R D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340(1294): 393–404. doi: 10.1098/rstb.1993.0081

    6. [6]

      GLOVER K M, HARDY K R, LANDRY C R, et al. Radar characteristics of known insects in free flight[C]. 12th Conference on Radar Meteorology, Oklahoma, USA, 1966: 254–258.

    7. [7]

      RILEY J R. Angular and temporal variations in the radar cross-sections of insects[J]. Proceedings of the Institution of Electrical Engineers, 1973, 120(10): 1229–1232. doi: 10.1049/piee.1973.0251

    8. [8]

      RILEY J R, VAUGHN C R, WOLF W, et al. Quantitative analysis of radar returns from insects[C]. A Workshop Held at NASA Wallops Flight Center, Wallops Island, USA, 1978: 131–158.

    9. [9]

      RILEY J R. Radar cross section of insects[J]. Proceedings of the IEEE, 1985, 73(2): 228–232. doi: 10.1109/PROC.1985.13135

    10. [10]

      ALDHOUS A C. An investigation of the polarisation dependence of insect radar cross sections at constant aspect[D]. [Ph.D. dissertation], Cranfield University, 1989.

    11. [11]

      MURTON R K and WRIGHT E N. The Problems of Birds as Pests[M]. New York: Academic Press, 1968: 53–86.

    12. [12]

      SCHAEFER G W. Radar observations of insect flight[C]. Insect Flight Symposia of the Royal Entomological Society, London, 1976: 157–197.

    13. [13]

      MIRKOVIC D, STEPANIAN P M, WAINWRIGHT C E, et al. Characterizing animal anatomy and internal composition for electromagnetic modelling in radar entomology[J]. Remote Sensing in Ecology and Conservation, 2019, 5(2): 169–179. doi: 10.1002/rse2.94

    14. [14]

      WANG Rui, HU Cheng, LIU Changjiang, et al. Migratory insect multifrequency radar cross sections for morphological parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3450–3461. doi: 10.1109/TGRS.2018.2884926

    15. [15]

      HU Cheng, LI Wenqing, WANG Rui, et al. Insect flight speed estimation analysis based on a full-polarization radar[J]. Science China Information Sciences, 2018, 61(10): 109306. doi: 10.1007/s11432-018-9484-2

    16. [16]

      WANG Rui, HU Cheng, FU Xiaowei, et al. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar[J]. Scientific Reports, 2017, 7(1): 1396. doi: 10.1038/s41598-017-01616-4

    17. [17]

      HU Cheng, KONG Shaoyang, WANG Rui, et al. Identification of migratory insects from their physical features using a decision-tree support vector machine and its application to radar entomology[J]. Scientific Reports, 2018, 8(1): 5449. doi: 10.1038/S41598-018-23825-1

    18. [18]

      汪兵. 非独立同分布起伏目标建模与检测算法研究[D].[博士论文], 电子科技大学, 2017.
      WANG Bing. Research on modeling and the detection algorithm of non-ⅡD fluctuation targets[D].[Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.

    19. [19]

      SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561

    20. [20]

      WEINSTOCK W. Target cross section models for radar system analysis[D]. [Ph.D. dissertation], University of Pennsylvania, 1964.

    21. [21]

      LEWINSKI D. Nonstationary probabilistic target and clutter scattering models[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(3): 490–498. doi: 10.1109/TAP.1983.1143067

    22. [22]

      SHNIDMAN D A. Expanded Swerling target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059–1069. doi: 10.1109/TAES.2003.1238757

    23. [23]

      ROSE M, HAIMOV S, and MOORE R K. Optimum detection of Weibull-distributed targets[C]. OCEANS '93, Victoria, Canada, 1993: Ⅱ/5-Ⅱ/9. doi: 10.1109/OCEANS.1993.326056.

    24. [24]

      SHNIDMAN D A. Calculation of probability of detection for log-normal target fluctuations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 172–174. doi: 10.1109/7.68161

    25. [25]

      SLOCUMB B J and KLUSMAN Ⅲ M E. A multiple model SNR/RCS likelihood ratio score for radar-based feature-aided tracking[C]. The SPIE 5913, Signal and Data Processing of Small Targets 2005, San Diego, USA, 2005: 540–551. doi: 10.1117/12.615288.

    26. [26]

      SHI Weiqiang, SHI Xiaowei, and XU Le. Radar Cross Section (RCS) statistical characterization using Weibull distribution[J]. Microwave and Optical Technology Letters, 2013, 55(6): 1355–1358. doi: 10.1002/mop.27557

    27. [27]

      林刚, 许家栋. 目标RCS动态数据的分布特征研究[J]. 现代雷达, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006
      LIN Gang and XU Jiadong. Study of the statistical characterization of targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006

    28. [28]

      史伟强, 徐乐, 史小卫, 等. 基于完备对数正态分布模型的隐形飞行器动态RCS统计特性研究[J]. 电子与信息学报, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161
      SHI Weiqiang, XU Le, SHI Xiaowei, et al. Dynamic RCS statistic characterization of stealth aircraft using complete lognormal distribution[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161

    29. [29]

      沈鹏. 海面舰船RCS起伏分布模型研究[J]. 指挥控制与仿真, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008
      SHEN Peng. RCS fluctuation distribution models research of Ship Target on Sea[J]. Command Control &Simulation, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008

    30. [30]

      SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 2008.

    31. [31]

      HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1755–1759. doi: 10.1109/LGRS.2017.2733719

    32. [32]

      HOBBS S E and ALDHOUS A C. Insect ventral radar cross-section polarisation dependence measurements for radar entomology[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 502–508. doi: 10.1049/ip-rsn:20060019

    33. [33]

      VAUGHN C R. Birds and insects as radar targets: A review[J]. Proceedings of the IEEE, 1985, 73(2): 205–227. doi: 10.1109/proc.1985.13134

    34. [34]

      MIRKOVIC D, STEPANIAN P M, KELLY J F, et al. Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms[J]. Scientific Reports, 2016, 6(1): 35637. doi: 10.1038/srep35637

    35. [35]

      NELSON S O, BARTLEY P G JR, and LAWRENCE K C. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control[J]. Transactions of the ASAE, 1998, 41(3): 685–692. doi: 10.13031/2013.17194

    36. [36]

      HOBBS S, ALLSOPP K, and WOLF W. Signal analysis for an entomological radar with a vertical Nutating beam[R]. College of Aeronautics Report 9919, 2003.

    37. [37]

      DOWDY P C. RCS probability distribution function modeling of a fluctuating target[C]. The 1991 IEEE National Radar Conference, Los Angeles, USA, 1991: 164–168. doi: 10.1109/NRC.1991.114752.

    38. [38]

      RILEY J R. Collective orientation in night-flying insects[J]. Nature, 1975, 253(5487): 113–114. doi: 10.1038/253113a0

    39. [39]

      CHAPMAN J W, NESBIT R L, BURGIN L E, et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects[J]. Science, 2010, 327(5966): 682–685. doi: 10.1126/science.1182990

    40. [40]

      HARMAN I T and DRAKE V A. Insect monitoring radar: Analytical time-domain algorithm for retrieving trajectory and target parameters[J]. Computers and Electronics in Agriculture, 2004, 43(1): 23–41. doi: 10.1016/j.compag.2003.08.005

    41. [41]

      HU Cheng, LI Weidong, WANG Rui, et al. Insect biological parameter estimation based on the invariant target parameters of the scattering matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6212–6225. doi: 10.1109/TGRS.2019.2904869

    42. [42]

      CHAPMAN J W, SMITH A D, WOIWOD I P, et al. Development of vertical-looking radar technology for monitoring insect migration[J]. Computers and Electronics in Agriculture, 2002, 35(2/3): 95–110. doi: 10.1016/s0168-1699(02)00013-3

    43. [43]

      DRAKE V A, CHAPMAN J W, LIM K S, et al. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form[J]. International Journal of Remote Sensing, 2017, 38(18): 5022–5044. doi: 10.1080/01431161.2017.1320453

    44. [44]

      HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect body length extraction based on the invariant target parameters[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3. doi: 10.1109/COMPEM.2018.8496592.

    1. [1]

      金松坡, 庄珊娜. 基于序列优化的认知雷达稳健旁瓣抑制方法. 电子与信息学报,

    2. [2]

      庞晓娇, 赵永波, 徐保庆, 曹成虎, 索之玲. 基于原子范数的MIMO雷达发射波形设计方法. 电子与信息学报,

    3. [3]

      杨善超, 田康生, 刘仁争, 郑玉军. 基于价值优化的相控阵雷达任务调度算法. 电子与信息学报,

    4. [4]

      李伟, 王泓霖, 郑家毅, 徐建业, 赵俊龙, 邹鲲. 博弈条件下雷达波形设计策略研究. 电子与信息学报,

    5. [5]

      陆潞, 高梅国. 分布式阵列雷达基线位置和相位误差的卫星标校方法. 电子与信息学报,

    6. [6]

      李瑞, 张群, 苏令华, 梁佳, 罗迎. 基于稀疏贝叶斯学习的双基雷达关联成像. 电子与信息学报,

    7. [7]

      贺丰收, 何友, 刘准钆, 徐从安. 卷积神经网络在雷达自动目标识别中的研究进展. 电子与信息学报,

    8. [8]

      李保珠, 关键, 董云龙. 基于航迹矢量检测的雷达与电子支援设施抗差关联算法. 电子与信息学报,

    9. [9]

      刘仁争, 田康生, 彭富强, 李浩. 基于非对称贴近度的预警雷达情报质量评估. 电子与信息学报,

    10. [10]

      胡健, 罗迎, 张群, 康乐, 何其芳. 空间旋转目标窄带雷达干涉式三维成像与微动特征提取. 电子与信息学报,

    11. [11]

      李煜, 陈杰, 张渊智. 合成孔径雷达海面溢油探测研究进展. 电子与信息学报,

    12. [12]

      肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势. 电子与信息学报,

    13. [13]

      侯静, 胡孟凯, 王子微. 一种改进的知识辅助MIMO雷达空时自适应处理方法. 电子与信息学报,

    14. [14]

      黄颖坤, 金炜东, 葛鹏, 李冰. 基于多尺度信息熵的雷达辐射源信号识别. 电子与信息学报,

    15. [15]

      吕晓德, 张汉良, 刘忠胜, 孙正豪, 刘平羽. 基于LTE信号的外辐射源雷达同频基站干扰抑制方法研究. 电子与信息学报,

    16. [16]

      李永伟, 谢文冲. 基于空时内插的端射阵机载雷达杂波补偿新方法. 电子与信息学报,

    17. [17]

      徐保庆, 赵永波, 庞晓娇. 基于实值处理的联合波束域双基地MIMO雷达测角算法. 电子与信息学报,

    18. [18]

      王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法. 电子与信息学报,

    19. [19]

      李保珠, 张林, 董云龙, 关键. 基于航迹矢量分级聚类的雷达与电子支援措施抗差关联算法. 电子与信息学报,

    20. [20]

      杨利超, 邢孟道, 孙光才, 王安乐, 盛佳恋. 一种微波光子雷达ISAR成像新方法. 电子与信息学报,

  • 图 1  RCS与昆虫体重关系

    图 2  实测昆虫RCS极化特性

    图 3  昆虫目标几何模型

    图 4  不同模型-介质仿真RCS百分比误差

    图 5  昆虫目标RCS起伏模型研究流程

    图 6  昆虫RCS起伏

    图 7  昆虫RCS起伏幅度PDF拟合

    表 1  实验昆虫样本信息

    序号昆虫名称体长(mm)体宽(mm)体重(mg)
    1未辨识飞蛾1#111.12.825.6
    2未辨识飞蛾1#215.03.035.5
    3枯叶蛾#116.74.072.2
    4枯叶蛾#217.95.0105.0
    5小地老虎19.54.9218.4
    6霜天蛾34.89.1319.7
    7未辨识飞蛾222.96.8400.7
    8甘薯天蛾#138.99.0530.1
    9甘薯天蛾#240.012.4680.4
    10甘薯天蛾#336.810.2935.3
    下载: 导出CSV

    表 2  介质密度及相对介电常数

    介质密度ρ(g/cm3)X波段相对介电常数
    1.00060.30-33.10j
    脊髓1.03823.80-10.84j
    干皮肤1.04531.30-14.41j
    壳质与血淋巴混合物1.26034.30-18.60j
    下载: 导出CSV

    表 3  等尺寸椭球体模型质量百分比误差(%)

    昆虫序号脊髓干皮肤壳质混合物
    1–77.99–84.75–86.00–124.27
    2–99.12–106.68–108.08–150.88
    3–93.78–101.14–102.49–144.16
    4–123.15–131.63–133.19–181.17
    5–12.25–16.51–17.30–41.43
    6–371.97–389.91–393.21–494.69
    7–38.37–43.63–44.59–74.34
    8–211.23–223.05–225.23–292.14
    9–373.30–391.29–394.60–496.36
    10–114.34–122.48–123.98–170.06
    平均误差–151.55–161.11–162.87–216.95
    下载: 导出CSV

    表 4  等质量椭球体模型体长百分比误差(%)

    昆虫序号脊髓干皮肤壳质混合物
    117.4818.5018.6923.60
    220.5121.4921.6726.41
    319.7920.7820.9625.74
    423.4824.4224.5929.15
    53.784.975.1810.91
    640.3841.1241.2544.80
    710.2611.3711.5716.91
    831.5132.3532.5136.59
    940.4441.1841.3144.86
    1022.4423.4023.5728.19
    平均误差23.0123.9624.1328.72
    下载: 导出CSV

    表 5  三轴椭球体模型高度百分比误差(%)

    昆虫序号脊髓干皮肤壳质混合物
    143.8245.8746.2355.41
    249.7851.6251.9460.14
    348.3950.2850.6259.04
    455.1956.8357.1264.43
    510.9114.1714.7529.29
    678.8179.5979.7283.18
    727.7330.3730.8442.64
    867.8769.0569.2574.50
    978.8779.6579.7883.23
    1053.3455.0555.3562.97
    平均误差51.4753.2553.5661.49
    下载: 导出CSV

    表 6  等质量椭球体模型RCS百分比误差(%)

    介质极化方向平行
    体轴RCS
    极化方向垂直
    体轴RCS
    224.322.1
    脊髓65.919.7
    干皮肤101.26.7
    壳质与血淋巴混合物68.832.8
    下载: 导出CSV

    表 7  分布函数表达式

    分布函数表达式参数
    ${\chi ^2}$$p\left( \sigma \right) = \dfrac{m}{ {\varGamma \left( m \right)\bar \sigma } }{\left[ {\dfrac{ {m\sigma } }{ {\bar \sigma } } } \right]^{m - 1} }\exp \left[ {\dfrac{ { - m\sigma } }{ {\bar \sigma } } } \right]$$\bar \sigma $为平均值,$2m$为自由度。
    Log-normal$p\left( \sigma \right) = \dfrac{1}{{\sigma \sqrt {4{\pi }\ln \rho } }}\exp \left\{ {\dfrac{{ - {{\left( {\ln \sigma - {\sigma _0}} \right)}^2}}}{{4\ln \rho }}} \right\}$${\sigma _0}$为中值,$\rho $为平均中值比
    Gamma$p\left( \sigma \right) = \dfrac{1}{ { {\beta ^\alpha }\varGamma \left( \alpha \right)} }{\sigma ^{\alpha - 1} }\exp \left( { - \dfrac{\sigma }{\beta } } \right)$$\alpha $是形状参数,$\beta $是尺度参数
    Weibull$p\left( \sigma \right) = \dfrac{b}{a}{\left( {\dfrac{\sigma }{a}} \right)^{b - 1}}\exp \left( { - {{\left( {\dfrac{\sigma }{a}} \right)}^b}} \right)$$a$是尺度参数,$b$是形状参数
    下载: 导出CSV

    表 8  昆虫RCS起伏PDF分布拟合误差

    昆虫序号RCS起伏
    样本点数
    Log-normal${\chi ^2}$GammaWeibull
    115000.08120.38700.07470.0960
    212500.12880.57740.12040.1307
    312800.07240.77090.07100.1102
    413400.09920.56520.09600.1262
    514600.08610.35550.07650.0903
    均值0.09350.53120.08770.1107
    下载: 导出CSV

    表 9  昆虫RCS起伏PDF分布K-S检验参数D

    昆虫序号RCS起伏
    样本点数
    Log-normalχ2GammaWeibull
    115000.02210.21410.01810.0370
    212500.03060.20450.01690.0266
    312800.01950.20940.00960.0342
    413400.02110.18310.01810.0356
    514600.02580.15830.01450.0271
    均值0.02380.19390.01540.0321
    下载: 导出CSV
  • 加载中
图(7)表(9)
计量
  • PDF下载量:  10
  • 文章访问数:  83
  • HTML全文浏览量:  62
文章相关
  • 通讯作者:  王锐, bit.wangrui@gmail.com
  • 收稿日期:  2019-08-12
  • 录用日期:  2019-11-22
  • 网络出版日期:  2019-11-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章