高级搜索

空间耦合LDPC码的分层译码算法

吴皓威 武小飞 邹润秋 欧静兰

引用本文: 吴皓威, 武小飞, 邹润秋, 欧静兰. 空间耦合LDPC码的分层译码算法[J]. 电子与信息学报, doi: 10.11999/JEIT190626 shu
Citation:  Haowei WU, Xiaofei WU, Runqiu ZOU, Jinglan OU. A Layered Decoding Algorithm for Spatially-coupled LDPC Codes[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190626 shu

空间耦合LDPC码的分层译码算法

    作者简介: 吴皓威: 男,1981年生,副研究员,博士生导师,主要研究方向为宽带无线通信、飞行器测控与组网等;
    武小飞: 男,1992年生,硕士生,研究方向为信道编解码技术、无线局域网等;
    邹润秋: 女,1994年生,硕士生,研究方向为信道编解码技术、无线局域网等;
    欧静兰: 女,1981年生,副教授,硕士生导师,主要研究方向为宽带通信、中继通信等
    通讯作者: 吴皓威,wuhaowei@cqu.edu.cn
  • 基金项目: 民用航天十三五预研项目(D010201),国家留学基金委项目(201908505018),重庆市科技人才专项资助项目(cstc2018zdcy-yszxX0001, cstc2017zdcy-yszx0008)

摘要: 针对长码长空间耦合低密度奇偶校验(SC-LDPC)码译码时延较长的问题,该文提出了分层滑动窗译码(LSWD)算法。该算法利用SC-LDPC子码码块的准循环特性和滑动窗内校验矩阵的层次结构,通过在滑动窗内对校验矩阵进行分层处理,优化层与层之间消息传递,从而加快窗内译码的收敛速度,减少了译码迭代次数。仿真和分析结果表明:在相同的信噪比(SNR)条件和相同的误码性能要求下,LSWD算法所需的迭代次数少于滑动窗译码(SWD)算法,特别在高信噪比下,LSWD算法的迭代次数约为SWD算法的一半,从而有效缩短全局译码时延;在相同译码迭代次数下,LSWD算法的译码性能优于SWD算法,而其计算复杂度增加不大。

English

    1. [1]

      KUDEKAR S, RICHARDSON T, and URBANKE R L. Spatially coupled ensembles universally achieve capacity under belief propagation[J]. IEEE Transactions on Information Theory, 2013, 59(12): 7761–7813. doi: 10.1109/TIT.2013.2280915

    2. [2]

      IYENGAR A R, PAPALEO M, SIEGEL P H, et al. Windowed decoding of protograph-based LDPC convolutional codes over erasure channels[J]. IEEE Transactions on Information Theory, 2012, 58(4): 2303–2320. doi: 10.1109/TIT.2011.2177439

    3. [3]

      SCHWANDTER S, AMAT A G I, and MATZ G. Spatially-coupled LDPC codes for decode-and-forward relaying of two correlated sources over the BEC[J]. IEEE Transactions on Communications, 2014, 62(4): 1324–1337. doi: 10.1109/TCOMM.2014.020514.130317

    4. [4]

      MITCHELL D G M, LENTMAIER M, and COSTELLO D J. Spatially coupled LDPC codes constructed from protographs[J]. IEEE Transactions on Information Theory, 2015, 61(9): 4866–4889. doi: 10.1109/TIT.2015.2453267

    5. [5]

      XIE Yixuan, YANG Lei, KANG Peng, et al. Euclidean geometry-based spatially coupled LDPC codes for storage[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(9): 2498–2509. doi: 10.1109/JSAC.2016.2603703

    6. [6]

      贺文武, 夏巧桥, 邹炼. 基于变量节点更新的交替方向乘子法LDPC惩罚译码算法[J]. 电子与信息学报, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358
      HE Wenwu, XIA Qiaoqiao, and ZOU Lian. Alternating direction method of multipliers LDPC penalized decoding algorithm based on variable node update[J]. Journal of Electronics &Information Technology, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358

    7. [7]

      IYENGAR A R, SIEGEL P H, URBANKE R L, et al. Windowed decoding of spatially coupled codes[J]. IEEE Transactions on Information Theory, 2013, 59(4): 2277–2292. doi: 10.1109/TIT.2012.2231465

    8. [8]

      KANG Peng, XIE Yixuan, YANG Lei, et al. Reliability-based windowed decoding for spatially coupled LDPC codes[J]. IEEE Communications Letters, 2018, 22(7): 1322–1325. doi: 10.1109/LCOMM.2018.2835466

    9. [9]

      ABU-SURRA S, PISEK E, and TAORI R. Spatially-coupled low-density parity check codes: zigzag-window decoding and code-family design considerations[C]. Information Theory and Applications Workshop, San Diego, USA, 2015: 275-281. doi: 10.1109/ITA.2015.7309001.

    10. [10]

      SCHLÜTER M, HASSAN N U, and FETTWEIS G P. On the construction of protograph based SC-LDPC codes for windowed decoding[C]. Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 15–18. doi: 10.1109/WCNC.2018.8377289.

    11. [11]

      ALI I, KIM J H, KIM S H, et al. Improving windowed decoding of SC LDPC codes by effective decoding termination, message reuse, and amplification[J]. IEEE Access, 2017, 6: 9336–9346. doi: 10.1109/ACCESS.2017.2771375

    12. [12]

      TADAYON M H, TASDIGHI A, BATTAGLIONI M, et al. Efficient search of compact QC-LDPC and SC-LDPC convolutional codes with large girth[J]. IEEE Communications Letters, 2018, 22(6): 1156–1159. doi: 10.1109/LCOMM.2018.2827959

    13. [13]

      穆丽伟, 刘星成, 张涵. 高性能时不变LDPC卷积码构造算法研究[J]. 电子与信息学报, 2016, 38(9): 2274–2279. doi: 10.11999/JEIT151376
      MU Liwei, LIU Xingcheng, and ZHANG Han. New ensemble of time-invariant LDPC convolutional codes with high performance[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2274–2279. doi: 10.11999/JEIT151376

    14. [14]

      CHEN Xiaoheng, LIN Shu, and AKELLA V. QSN-a simple circular-shift network for reconfigurable quasi-cyclic LDPC decoders[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(10): 782–786. doi: 10.1109/TCSII.2010.2067811

  • 图 1  SC-LDPC码原模图的构造过程

    图 2  滑动窗译码示意图

    图 3  滑动窗分层结构示例

    图 4  仿真中使用的SC-LDPC码校验矩阵

    图 5  LSWD算法和SWD算法的误码率曲线

    图 6  最大迭代次数对算法误码率性能的影响

    图 7  LSWD算法在不同译码窗长度时的译码性能比较

    图 8  LSWD算法在不同校验矩阵扩展因子时的译码效果

    表 1  译码算法单次迭代过程的计算量比较

    译码算法加法运算$\phi (x)$运算
    SWD${K_g} \times M \times W \times (J + K + 1)$$2{K_g} \times M \times W \times J$
    LSWD${K_g} \times M \times W \times (2J + K + 1)$$2{K_g} \times M \times W \times J$
    下载: 导出CSV
  • 加载中
图(8)表(1)
计量
  • PDF下载量:  7
  • 文章访问数:  909
  • HTML全文浏览量:  485
文章相关
  • 通讯作者:  吴皓威, wuhaowei@cqu.edu.cn
  • 收稿日期:  2019-08-14
  • 录用日期:  2020-03-14
  • 网络出版日期:  2020-04-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章