高级搜索

椭圆球面函数频域调制解调方法

陆发平 王红星 刘传辉 康家方 杨大伟

引用本文: 陆发平, 王红星, 刘传辉, 康家方, 杨大伟. 椭圆球面函数频域调制解调方法[J]. 电子与信息学报, doi: 10.11999/JEIT190642 shu
Citation:  Faping LU, Hongxing WANG, Chuanhui LIU, Jiafang KANG, Dawei YANG. PSWFs Frequency Domain Modulation and Demodulation Method[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190642 shu

椭圆球面函数频域调制解调方法

    作者简介: 陆发平: 男,1991年生,博士生,研究方向为现代通信系统、非正弦波通信;
    王红星: 男,1962年生,教授,研究方向为现代通信系统、非正弦波通信、无线光通信;
    刘传辉: 男,1984年生,讲师,研究方向为现代通信新技术、非正弦波通信;
    康家方: 男,1987年生,讲师,研究方向为现代通信新技术、扩频通信、非正弦波通信;
    杨大伟: 男,1988年生,博士生,研究方向为现代通信新技术、非正弦波通信
    通讯作者: 刘传辉,lchgfy@163.com
  • 基金项目: 国家自然科学基金(61701518),山东省“泰山学者”建设工程专项经费基金(ts20081130)

摘要: 针对基于椭圆球面波函数(PSWFs)的非正弦时域调制算法复杂度高的不足,该文引入空间映射,分析了PSWFs信号频域完备正交性,推导出PSWFs信号频域有效表示所需最小抽样点数。在此基础上,引入复数域映射、FFT/IFFT信号处理框架,提出PSWFs频域调制解调方法。该方法将PSWFs信号处理由时域拓展到频域,在频域进行信息加载与检测,为探索研究PSWFs信号在5G、超5G等采用频域信号处理的通信系统中的应用提供了可能。理论和数值分析表明,相对于PSWFs时域调制,所提方法将能够在不改变系统频带利用率、系统误码性能、调制信号能量聚集性以及信号峰均功率比的前提下,显著降低算法复杂度,将运算复杂度由O(2Qg2)降低为O(g2+glog2g)。

English

    1. [1]

      NISSEL R, SCHWARZ S, and RUPP M. Filter bank multicarrier modulation schemes for future mobile communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1768–1782. doi: 10.1109/JSAC.2017.2710022

    2. [2]

      SOLDANI D, GUO Y J, BARANI B, et al. 5G for ultra-reliable low-latency communications[J]. IEEE Network, 2018, 32(2): 6–7. doi: 10.1109/MNET.2018.8329617

    3. [3]

      黄容兰, 刘云, 李啟尚, 等. 基于非正交多址接入中继通信系统的功率优化[J]. 电子与信息学报, 2019, 41(8): 1909–1915. doi: 10.11999/JEIT180842
      HUANG Ronglan, LIU Yun, LI Qishang, et al. Power allocation optimization of cooperative relaying systems using non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1909–1915. doi: 10.11999/JEIT180842

    4. [4]

      申滨, 吴和彪, 崔太平, 等. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测[J]. 电子与信息学报, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270
      SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270

    5. [5]

      王汝言, 梁颖杰, 崔亚平. 车辆网络多平台卸载智能资源分配算法[J]. 电子与信息学报, 2020, 42(1): 263–270. doi: 10.11999/JEIT190074
      WANG Ruyan, LIANG Yingjie, and CUI Yaping. Intelligent resource allocation algorithm for multi-platform offloading in vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(1): 263–270. doi: 10.11999/JEIT190074

    6. [6]

      IBRAHIM M, DEMIR A F, and ARSLAN H. Time-frequency warped waveforms[J] IEEE Communications Letters, 2019, 23(1): 36–39. doi: 10.1109/LCOMM.2018.2882498.

    7. [7]

      SLEPIAN D and POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-I[J]. The Bell System Technical Journal, 1961, 20(1): 43–63. doi: 10.1002/j.1538-7305.1961.tb03976.x

    8. [8]

      王红星, 陆发平, 刘传辉, 等. 椭圆球面波信号间交叉项时频分布特性研究[J]. 电子与信息学报, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877
      WANG Hongxing, LU Faping, LIU Chuanhui, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877

    9. [9]

      OSIPOV A, ROKHLIN V, and XIAO Hong. Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation[M]. Boston: Springer, 2013: 33–66. doi: 10.1007/978-1-4614-8259-8.

    10. [10]

      CHEN Zhaonan, WANG Hongxing, LIU Xiguo, et al. Maximal capacity nonorthogonal pulse shape modulation[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1699–1708. doi: 10.1016/j.cja.2015.09.008

    11. [11]

      SLEPIAN D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case[J]. The Bell System Technical Journal, 1978, 57(5): 1371–1430. doi: 10.1002/j.1538-7305.1978.tb02104.x

    12. [12]

      SELINIS I, KATSAROS K, ALLAYIOTI M, et al. The race to 5G era; LTE and Wi-Fi[J]. IEEE Access, 2018, 6: 56598–56636. doi: 10.1109/ACCESS.2018.2867729

    13. [13]

      HAMMOODI A, AUDAH L, and TAHER M A. Green coexistence for 5G waveform candidates: A review[J]. IEEE Access, 2019, 7: 10103–10126. doi: 10.1109/ACCESS.2019.2891312

    14. [14]

      HARMUTH H F. Frequency-sharing and spread-spectrum transmission with large relative bandwidth[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, EMC-20(1): 232–239. doi: 10.1109/TEMC.1978.303653

    1. [1]

      张天骐, 范聪聪, 葛宛营, 张天. 基于ICA和特征提取的MIMO信号调制识别算法. 电子与信息学报,

    2. [2]

      孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究. 电子与信息学报,

  • 图 1  信号频域拓展产生整个频率范围信号

    图 2  PSWFs频域调制方法原理框图

    图 3  PSWFs频域检测原理框图

    图 4  信号频域抽样点选择

    图 5  系统误码性能、信号功率谱与CCDF

    表 1  仿真参数设置

    参数符号数值
    信号时间带宽积g36 Hz·s
    信号时宽T66.7 μs
    信号频带范围[0 0.27] MHz
    信号路数c-kk1
    时域抽样点个数NT1024
    频域总抽样点个数NFg+1
    增加抽样点数NP2
    下载: 导出CSV
  • 加载中
图(5)表(1)
计量
  • PDF下载量:  4
  • 文章访问数:  383
  • HTML全文浏览量:  175
文章相关
  • 通讯作者:  刘传辉, lchgfy@163.com
  • 收稿日期:  2019-08-26
  • 网络出版日期:  2020-05-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章