高级搜索

基于压缩感知理论的图像优化技术

王钢 周若飞 邹昳琨

引用本文: 王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, doi: 10.11999/JEIT190669 shu
Citation:  Gang WANG, Ruofei ZHOU, Yikun ZOU. Research on Image Optimization Technology Based on Compressed Sensing[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190669 shu

基于压缩感知理论的图像优化技术

    作者简介: 王钢: 男,1962年生,教授,博士生导师,主要研究方向为数据通信、物理层网络编码、通信网理论与技术;
    周若飞: 男,1989年生,博士生,研究方向为压缩感知与图像处理、压缩感知与网络编码;
    邹昳琨: 男,1992年生,博士生,研究方向为多无人机通信网络性能优化
    通讯作者: 王钢,gwang51@hit.edu.cn
  • 基金项目: 国家自然科学基金(61671184, 61401120),国家科技重大专项(2015ZX03001041)

摘要: 压缩感知(CS)理论是目前信息工程相关领域研究的前沿热点之一。它打破了传统的奈奎斯特采样定理,相比于其要求的最小采样频率,CS理论证明了能够从更低数目的采样中以高概率完整地恢复原始信号,在保证信息特征不丢失的前提下节省了数据采集和处理的时间成本。压缩感知理论本质上可以视为处理线性信号恢复问题的工具,因此在求解信号和图像的逆问题上有着显而易见的优势。图像退化问题便是其中之一,恢复相应的高质量图像的过程即为图像优化。为推动压缩感知理论的学术研究与实际应用,该文介绍了其基本原理与方法。根据图像优化技术的现存研究工作,分别从去噪、去模糊和超分辨三大主流方面研究了基于CS理论的优化技术。最后探讨了所面临的问题和挑战,分析了未来的发展趋势,为将来研究工作的展开提供借鉴与帮助。

English

    1. [1]

      BANHAM M R and KATSAGGELOS A K. Digital image restoration[J]. IEEE Signal Processing Magazine, 1997, 14(2): 24–41. doi: 10.1109/79.581363

    2. [2]

      JIANG Jielin, ZHANG Lei, and YANG Jian. Mixed noise removal by weighted encoding with sparse nonlocal regularization[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2651–2662. doi: 10.1109/TIP.2014.2317985

    3. [3]

      RODRÍGUEZ P, ROJAS R, and WOHLBERG B. Mixed Gaussian-impulse noise image restoration via total variation[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 1077–1080. doi: 10.1109/ICASSP.2012.6288073.

    4. [4]

      ZHANG Jian, XIONG Ruiqin, ZHAO Chen, et al. Exploiting image local and nonlocal consistency for mixed Gaussian-impulse noise removal[C]. 2012 IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 2012: 592–597. doi: 10.1109/ICME.2012.109.

    5. [5]

      CAI Jianfeng, CHAN R H, and NIKOLOVA M. Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise[J]. Inverse Problems and Imaging, 2008, 2(2): 187–204. doi: 10.3934/ipi.2008.2.187

    6. [6]

      FERGUS R, SINGH B, HERTZMANN A, et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787–794. doi: 10.1145/1141911.1141956

    7. [7]

      SHAN Qi, JIA Jiaya, and AGARWALA A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 2008, 27(3): 73. doi: 10.1145/1360612.1360672

    8. [8]

      ZHENG Shicheng, XU Li, and JIA Jiaya. Forward motion deblurring[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1465–1472. doi: 10.1109/ICCV.2013.185.

    9. [9]

      GLASNER D, BAGON S, and IRANI M. Super-resolution from a single image[C]. The 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 349–356. doi: 10.1109/ICCV.2009.5459271.

    10. [10]

      PARK S C, PARK M K, and KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21–36. doi: 10.1109/MSP.2003.1203207

    11. [11]

      YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861–2873. doi: 10.1109/TIP.2010.2050625

    12. [12]

      CHEN Yongyong, GUO Yanwen, WANG Yongli, et al. Denoising of hyperspectral images using nonconvex low rank matrix approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5366–5380. doi: 10.1109/TGRS.2017.2706326

    13. [13]

      MANJÓN J V, CARBONELL-CABALLERO J, LULL J J, et al. MRI denoising using non-local means[J]. Medical Image Analysis, 2008, 12(4): 514–523. doi: 10.1016/j.media.2008.02.004

    14. [14]

      PENG Yigang, GANESH A, WRIGHT J, et al. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2233–2246. doi: 10.1109/TPAMI.2011.282

    15. [15]

      WANG Naiyan and YEUNG D Y. Bayesian robust matrix factorization for image and video processing[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1785–1792. doi: 10.1109/ICCV.2013.224.

    16. [16]

      DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582

    17. [17]

      CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083

    18. [18]

      CANDES E J and TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406–5425. doi: 10.1109/TIT.2006.885507

    19. [19]

      MALLAT S G. A Wavelet Tour of Signal Processing[M]. San Diego, USA: Academic Press, 1999: 263-376.

    20. [20]

      CANDÈS E J and DONOHO D L. Ridgelets: A key to higher-dimensional intermittency?[J]. Philosophical Transactions of the Royal Society B, 1999, 357(1760): 2495–2509. doi: 10.1098/rsta.1999.0444

    21. [21]

      CANDES E J and DONOHO D L. Curvelets, multiresolution representation, and scaling laws[C]. SPIE 4119, Wavelet Applications in Signal and Image Processing VIII, San Diego, 2000: 1–12. doi: 10.1117/12.408568.

    22. [22]

      DONOHO D L. Wedgelets: Nearly minimax estimation of edges[J]. The Annals of Statistics, 1999, 27(3): 859–897. doi: 10.1214/aos/1018031261

    23. [23]

      DO M N and VETTERLI M. The contourlet transform: An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091–2106. doi: 10.1109/TIP.2005.859376

    24. [24]

      PENNEC L E and MALLAT S. Bandelet representations for image compression[C]. The 2001 International Conference on Image Processing, Thessaloniki, Greece, 2001: 12. doi: 10.1109/ICIP.2001.958939.

    25. [25]

      ELAD M and AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736–3745. doi: 10.1109/TIP.2006.881969

    26. [26]

      AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199

    27. [27]

      CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979

    28. [28]

      CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731

    29. [29]

      CANDÈS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. doi: 10.1016/j.crma.2008.03.014

    30. [30]

      LIU Xinji, XIA Shutao, and DAI Tao. Deterministic constructions of binary measurement matrices with various sizes[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 3641–3645. doi: 10.1109/ICASSP.2015.7178650.

    31. [31]

      BRUCKSTEIN A M, DONOHO D L, and ELAD M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review, 2009, 51(1): 34–81. doi: 10.1137/060657704

    32. [32]

      TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/tit.2007.909108

    33. [33]

      RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F

    34. [34]

      FRIEDMAN N and RUSSELL S. Image segmentation in video sequences: A probabilistic approach[C]. The 13th Conference on Uncertainty in Artificial Intelligence, Providence, USA, 1997: 175–181.

    35. [35]

      VETTERLI M and KOVACEVIC J. Wavelets and Subband Coding[M]. Englewood Cliffs, USA: Prentice Hall, 1995: 414–445.

    36. [36]

      DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613–627. doi: 10.1109/18.382009

    37. [37]

      DONOHO D L and JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425–455. doi: 10.1093/biomet/81.3.425

    38. [38]

      PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338–1351. doi: 10.1109/TIP.2003.818640

    39. [39]

      DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238

    40. [40]

      SANTOS C A N, MARTINS D L N, and MASCARENHAS N D A. Ultrasound image despeckling using stochastic distance-based BM3D[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2632–2643. doi: 10.1109/TIP.2017.2685339

    41. [41]

      LI Yingjiang, ZHANG Jiangwei, and WANG Maoning. Improved BM3D denoising method[J]. IET Image Processing, 2017, 11(12): 1197–1204. doi: 10.1049/iet-ipr.2016.1110

    42. [42]

      SICA F, COZZOLINO D, ZHU Xiaoxiang, et al. InSAR-BM3D: A nonlocal filter for SAR interferometric phase restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3456–3467. doi: 10.1109/TGRS.2018.2800087

    43. [43]

      QIAO Tong, REN Jinchang, WANG Zheng, et al. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 119–133. doi: 10.1109/TGRS.2016.2598065

    44. [44]

      MAIRAL J, ELAD M, and SAPIRO G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 2008, 17(1): 53–69. doi: 10.1109/TIP.2007.911828

    45. [45]

      CHATTERJEE P and MILANFAR P. Clustering-based denoising with locally learned dictionaries[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1438–1451. doi: 10.1109/TIP.2009.2018575

    46. [46]

      MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]. The 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 2272–2279. doi: 10.1109/ICCV.2009.5459452.

    47. [47]

      KATKOVNIK V, FOI A, EGIAZARIAN K, et al. From local kernel to nonlocal multiple-model image denoising[J]. International Journal of Computer Vision, 2010, 86(1): 1. doi: 10.1007/s11263-009-0272-7

    48. [48]

      DONG Weisheng, LI Xin, ZHANG Lei, et al. Sparsity-based Image denoising via dictionary learning and structural clustering[C]. CVPR 2011, Providence, USA, 2011: 457–464. doi: 10.1109/CVPR.2011.5995478.

    49. [49]

      DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847

    50. [50]

      DONG Weisheng, SHI Guangming, MA Yi, et al. Image restoration via simultaneous sparse coding: Where structured sparsity meets Gaussian scale mixture[J]. International Journal of Computer Vision, 2015, 114(2/3): 217–232. doi: 10.1007/s11263-015-0808-y

    51. [51]

      ZHA Zhiyuan, ZHANG Xinggan, WANG Qiong, et al. Group sparsity residual with non-local samples for image denoising[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 1353–1357. doi: 10.1109/ICASSP.2018.8461388.

    52. [52]

      NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002

    53. [53]

      WANG Jian, KWON S, and SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202–6216. doi: 10.1109/tsp.2012.2218810

    54. [54]

      EMERSON T H, OLSON C C, and DOSTER T. Path-based dictionary augmentation: A framework for improving k -sparse image processing[J]. IEEE Transactions on Image Processing, 2020, 29: 1259–1270. doi: 10.1109/TIP.2019.2927331

    55. [55]

      JIN Y, KU B, AHN J, et al. Nonhomogeneous noise removal from side-scan sonar images using structural sparsity[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1215–1219. doi: 10.1109/LGRS.2019.2895843

    56. [56]

      HAN Jing, YUE Jiang, ZHNAG Yi, et al. Local sparse structure denoising for low-light-level image[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5177–5192. doi: 10.1109/TIP.2015.2447735

    57. [57]

      XIE Ting, LI Shutao, and SUN Bin. Hyperspectral images denoising via nonconvex regularized low-rank and sparse matrix decomposition[J]. IEEE Transactions on Image Processing, 2020, 29: 44–56. doi: 10.1109/TIP.2019.2926736

    58. [58]

      SONG Pingfan, WEIZMAN L, MOTA J F C, et al. Coupled dictionary learning for multi-contrast MRI reconstruction[C]. The 201825th IEEE International Conference on Image Processing, Athens, Greece, 2018: 2880–2884. doi: 10.1109/ICIP.2018.8451341.

    59. [59]

      RICHARDSON W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1): 55–59. doi: 10.1364/JOSA.62.000055

    60. [60]

      LUCY L B. An iterative technique for the rectification of observed distributions[J]. Astronomical Journal, 1974, 79: 745–754. doi: 10.1086/111605

    61. [61]

      LOU Yifei, BERTOZZI A L, and SOATTO S. Direct sparse deblurring[J]. Journal of Mathematical Imaging and Vision, 2011, 39(1): 1–12. doi: 10.1007/s10851-010-0220-8

    62. [62]

      YUAN Lu, SUN Jian, QUAN Long, et al. Image deblurring with blurred/noisy image pairs[J]. ACM Transactions on Graphics, 2007, 26(3): 1. doi: 10.1145/1276377.1276379

    63. [63]

      唐述, 谢显中. 多正则化混合约束的模糊图像盲复原方法[J]. 电子与信息学报, 2015, 37(4): 770–776. doi: 10.11999/JEIT140949
      TANG Shu and XIE Xianzhong. Multi-regularization hybrid constraints method for blind image restoration[J]. Journal of Electronics &Information Technology, 2015, 37(4): 770–776. doi: 10.11999/JEIT140949

    64. [64]

      HU Zhe, HUANG Jiabin, and YANG M H. Single image deblurring with adaptive dictionary learning[C]. The 2010 IEEE International Conference on Image Processing, Hong Kong, China, 2010: 1169–1172. doi: 10.1109/ICIP.2010.5651892.

    65. [65]

      YU Jing, CHANG Zhenchun, XIAO Chuangbai, et al. Blind image deblurring based on sparse representation and structural self-similarity[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 1328–1332. doi: 10.1109/ICASSP.2017.7952372.

    66. [66]

      ROSTAMI M, MICHAILOVICH O, and WANG Zhou. Image deblurring using derivative compressed sensing for optical imaging application[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139–3149. doi: 10.1109/TIP.2012.2190610

    67. [67]

      CHEN Jia, YUAN Lu, TANG C K, et al. Robust dual motion deblurring[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587830.

    68. [68]

      ZHU Xiang, ŠROUBEK F, and MILANFAR P. Deconvolving PSFs for a better motion deblurring using multiple images[C]. The 12th European Conference on Computer Vision, Florence, Italy, 2012: 636–647. doi: 10.1007/978-3-642-33715-4_46.

    69. [69]

      ZHANG Haichao, WIPF D, and ZHANG Yanning. Multi-image blind deblurring using a coupled adaptive sparse prior[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1051–1058. doi: 10.1109/CVPR.2013.140.

    70. [70]

      XIANG Fengtao, HUANG Yumin, GU Xueqiang, et al. A restoration method of infrared image based on compressive sampling[C]. The 20168th International Conference on Intelligent Human-machine Systems and Cybernetics, Hangzhou, China, 2016: 493–496. doi: 10.1109/IHMSC.2016.98.

    71. [71]

      ZHANG Yan, PU Haitao, and LIAN Jian. Quick response barcode deblurring via l0-regularisation based sparse optimisation[J]. IET Image Processing, 2019, 13(8): 1254–1258. doi: 10.1049/iet-ipr.2018.5738

    72. [72]

      LEE H, JUNG C, and KIM C. Blind deblurring of text images using a text-specific hybrid dictionary[J]. IEEE Transactions on Image Processing, 2020, 29: 710–723. doi: 10.1109/TIP.2019.2933739

    73. [73]

      吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1300.2012.20093
      WU Min, XING Mengdao, and ZHANG Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics &Information Technology, 2014, 36(1): 187–193. doi: 10.3724/SP.J.1300.2012.20093

    74. [74]

      DEKA B, GORAIN K K, KALITA N, et al. Single image super-resolution using compressive sensing with learned overcomplete dictionary[C]. The 2013 4th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, Jodhpur, India, 2013: 1–5. doi: 10.1109/NCVPRIPG.2013.6776176.

    75. [75]

      SUN Yicheng, GU Guohua, SUI Xiubao, et al. Single image super-resolution using compressive sensing with a redundant dictionary[J]. IEEE Photonics Journal, 2015, 7(2): 6900411. doi: 10.1109/JPHOT.2015.2409063

    76. [76]

      SUN Yicheng, GU Guohua, SUI Xiubao, et al. Compressive superresolution imaging based on local and nonlocal regularizations[J]. IEEE Photonics Journal, 2016, 8(1): 6900112. doi: 10.1109/JPHOT.2016.2516251

    77. [77]

      XIAO Aoran, SHAO Zhenfeng, and WANG Zhongyuan. Sparse coding for super-resolution via K-means classification[C]. 2017 IEEE International Conference on Multimedia & Expo Workshops, Hong Kong, China, 2017: 363–368. doi: 10.1109/ICMEW.2017.8026254.

    78. [78]

      ZHOU Ruofei, WANG Gang, ZHAO Donglai, et al. Super-resolution of low-quality images based on compressed sensing and sequence information[C]. The 2019 IEEE 90th Vehicular Technology Conference, Honolulu, USA, 2019: 1–5. doi: 10.1109/VTCFall.2019.8891073.

    79. [79]

      LIAO Haibin, DAI Wenhua, ZHOU Qianjin, et al. Non-local similarity dictionary learning based face super-resolution[C]. The 201412th International Conference on Signal Processing, Hangzhou, China, 2014: 88-93. doi: 10.1109/ICOSP.2014.7014975.

    80. [80]

      RANA S, SINGH H, and KUMAR A. Comparative analysis of single and multi frame super resolution in satellite imagery[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 7220–7223. doi: 10.1109/IGARSS.2018.8517329.

    81. [81]

      GU Peijian and ZHENG Lin. Fast low-dose computed tomography image super-resolution reconstruction via sparse coding and random forests[C]. The 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019: 1400–1403. doi: 10.1109/ITAIC.2019.8785482.

    82. [82]

      SUN Yicheng, GU Guohua, SUI Xiubao, et al. Super-resolution imaging using compressive sensing and binary pure-phase annular filter[J]. IEEE Photonics Journal, 2017, 9(3): 7802409. doi: 10.1109/JPHOT.2017.2696519

    83. [83]

      MARCUS G. Deep learning: A critical appraisal[J]. arXiv: 1801.00631, 2018.

    1. [1]

      胡炎, 单子力, 高峰. 一种面向多星多分辨率的SAR图像舰船候选区域提取方法. 电子与信息学报,

    2. [2]

      赵辉, 张静, 张乐, 刘莹莉, 张天骐. 基于非局部低秩和加权全变分的图像压缩感知重构算法. 电子与信息学报,

    3. [3]

      杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法. 电子与信息学报,

    4. [4]

      余映, 吴青龙, 邵凯旋, 康迂星, 杨鉴. 超复数域小波变换的显著性检测. 电子与信息学报,

    5. [5]

      余东平, 郭艳, 李宁, 刘杰, 杨思星. 基于多维测量信息的压缩感知多目标无源被动定位算法. 电子与信息学报,

    6. [6]

      余东平, 郭艳, 李宁, 杨思星, 宋晓祥. 压缩感知多目标无源定位中的字典适配方法. 电子与信息学报,

    7. [7]

      赵杨, 尚朝轩, 韩壮志, 韩宁, 解辉. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰. 电子与信息学报,

    8. [8]

      张玉, 李天琪, 张进, 唐波. 基于集成固有时间尺度分解的IFF辐射源个体识别算法. 电子与信息学报,

    9. [9]

      张欢, 雷宏. 线性逆问题中惩罚优化方法信号重建误差界研究. 电子与信息学报,

    10. [10]

      申滨, 吴和彪, 崔太平, 陈前斌. 基于最优索引广义正交匹配追踪的非正交多址系统多用户检测. 电子与信息学报,

    11. [11]

      胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法. 电子与信息学报,

    12. [12]

      廖苗, 李阳, 赵于前, 刘毅志. 一种新的图像超像素分割方法. 电子与信息学报,

    13. [13]

      赵凤, 张咪咪, 刘汉强. 区域信息驱动的多目标进化半监督模糊聚类图像分割算法. 电子与信息学报,

    14. [14]

      梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原. 电子与信息学报,

    15. [15]

      兰蓉, 林洋. 抑制式非局部空间直觉模糊C-均值图像分割算法. 电子与信息学报,

    16. [16]

      葛芸, 马琳, 江顺亮, 叶发茂. 基于高层特征图组合及池化的高分辨率遥感图像检索. 电子与信息学报,

    17. [17]

      高敏娟, 党宏社, 魏立力, 张选德. 基于非局部梯度的图像质量评价算法. 电子与信息学报,

    18. [18]

      李付鹏, 刘敬彪, 王光义, 王康泰. 基于混沌集的图像加密算法. 电子与信息学报,

    19. [19]

      赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建. 电子与信息学报,

    20. [20]

      毕秀丽, 魏杨, 肖斌, 李伟生, 马建峰. 基于级联卷积神经网络的图像篡改检测算法. 电子与信息学报,

  • 图 1  压缩感知理论的主要内容

    图 2  基于Wavelet和Curvelet去噪效果直观视觉对比

    图 6  基于CS图像超分辨技术的应用

    图 3  基于CS图像去模糊技术的应用

    图 4  基于CS图像去噪技术的应用

    图 5  基于多帧CS图像超分辨结果

    表 1  基于小波方法和基于曲波方法对比

    评价指标PSNR(dB)MSEMAE
    小波方法22.36289.1613.52
    曲波方法22.97254.5212.97
    下载: 导出CSV

    表 2  主流稀疏去噪方法PSNR对比(dB)

    去噪算法BM3DLSSCNCSRSSC-GSM
    Monarch图像32.4632.1532.3432.52
    Barbara图像33.2732.9633.0233.32
    Straw图像29.1328.9529.1329.16
    下载: 导出CSV

    表 3  多种超分辨方法的信息熵与平均梯度对比

    超分辨算法原始图像Bicubic插值单帧CS多帧CS
    信息熵6.1626.4736.4876.532
    平均梯度4.3553.9514.9865.282
    下载: 导出CSV
  • 加载中
图(6)表(3)
计量
  • PDF下载量:  9
  • 文章访问数:  91
  • HTML全文浏览量:  90
文章相关
  • 通讯作者:  王钢, gwang51@hit.edu.cn
  • 收稿日期:  2019-09-02
  • 录用日期:  2019-11-19
  • 网络出版日期:  2019-11-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章