高级搜索

基于量子不经意密钥传输的量子匿名认证密钥交换协议

魏春艳 蔡晓秋 王天银 苏琦 秦素娟 高飞 温巧燕

引用本文: 魏春艳, 蔡晓秋, 王天银, 苏琦, 秦素娟, 高飞, 温巧燕. 基于量子不经意密钥传输的量子匿名认证密钥交换协议[J]. 电子与信息学报, doi: 10.11999/JEIT190679 shu
Citation:  Chunyan WEI, Xiaoqiu CAI, Tianyin WANG, Qi SU, Sujuan QIN, Fei GAO, Qiaoyan WEN. Quantum Anonymous Authenticated Key Exchange Protocol Based on Quantum Oblivious Key Transfer[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190679 shu

基于量子不经意密钥传输的量子匿名认证密钥交换协议

    作者简介: 魏春艳: 女,1982年生,副教授,研究方向为量子密码与量子信息;
    蔡晓秋: 女,1980年生,副教授,研究方向为量子密码与量子计算;
    王天银: 男,1979年生,教授,研究方向为量子密码与量子信息;
    苏琦: 男,1985年生,副研究员,研究方向为量子密码与量子计算;
    秦素娟: 女,1979年生,副教授,研究方向为量子密码与量子计算;
    高飞: 男,1980年生,教授,研究方向为量子密码与量子计算;
    温巧燕: 女,1959年生,教授,研究方向为密码学与信息安全
    通讯作者: 高飞,gaofei_bupt@hotmail.com
  • 基金项目: 国家自然科学基金(61672110, 61671082, 61902166, 61572246, 61602232, 61602045),河南省科技攻关计划项目(182102310930),河南省高校科技创新研究团队基金(18IRTSTHN014)

摘要: 鉴于量子密码在密钥分配方面取得的巨大成功,人们也在尝试利用量子性质来设计其他各类密码协议。匿名认证密钥交换就是一类尚缺乏实用化量子实现途径的密码任务。为此,该文提出一个基于量子不经意密钥传输的量子匿名认证密钥交换协议。它在满足用户匿名性和实现用户与服务器双向认证的前提下,为双方建立了一个安全的会话密钥。该协议的安全性基于量子力学原理,可以对抗量子计算的攻击。此外,该协议中服务器的攻击行为要么无法奏效,要么能够与外部窃听区分开(从而被认定为欺骗),因此服务器通常不敢冒着名誉受损的风险来实施欺骗。

English

    1. [1]

      VIET D Q, YAMAMURA A, and TANAKA H. Anonymous password-based authenticated key exchange[C]. The 6th International Conference on Cryptology in India, Bangalore, India, 2005: 244–257. doi: 10.1007/11596219_20.

    2. [2]

      HU Xuexian, ZHANG Jiang, ZHANG Zhenfeng, et al. Universally composable anonymous password authenticated key exchange[J]. Science China Information Sciences, 2017, 60(5): 52107. doi: 10.1007/s11432-016-5522-z

    3. [3]

      LI Xiong, IBRAHIM M H, KUMARI S, et al. Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks[J]. Computer Networks, 2017, 129: 429–443. doi: 10.1016/j.comnet.2017.03.013

    4. [4]

      SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. The 35th Annual Symposium on Foundations of Computer Science, Santa Fe, USA, 1994: 124–134. doi: 10.1109/SFCS.1994.365700.

    5. [5]

      GROVER L K. A fast quantum mechanical algorithm for database search[C]. The 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 212-219. doi: 10.1145/237814.237866.

    6. [6]

      GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145–195. doi: 10.1103/RevModPhys.74.145

    7. [7]

      EVEN S, GOLDREICH O, and LEMPEL A. A randomized protocol for signing contracts[J]. Communications of the ACM, 1985, 28(6): 637–647. doi: 10.1145/3812.3818

    8. [8]

      BRASSARD G, CREPEAU C, and ROBERT J M. All-or-nothing disclosure of secrets[M]. Odlyzko A M. Advances in Cryptology - CRYPTO’ 86. Berlin, Heidelberg: Springer, 1987: 234–238. doi: 10.1007/3-540-47721-7_17.

    9. [9]

      GAO Fei, QIN Sujuan, HUANG Wei, et al. Quantum private query: A new kind of practical quantum cryptographic protocol[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 70301. doi: 10.1007/s11433-018-9324-6

    10. [10]

      JAKOBI M, SIMON C, GISIN N, et al. Practical private database queries based on a quantum- key-distribution protocol[J]. Physical Review A, 2011, 83(2): 022301. doi: 10.1103/PhysRevA.83.022301

    11. [11]

      SCARANI V, ACÍN A, RIBORDY G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations[J]. Physical Review Letters, 2004, 92(5): 057901. doi: 10.1103/physrevlett.92.057901

    12. [12]

      GAO Fei, LIU Bin, WEN Qiaoyan, et al. Flexible quantum private queries based on quantum key distribution[J]. Optics Express, 2012, 20(16): 17411–17420. doi: 10.1364/OE.20.017411

    13. [13]

      ZHANG Jiali, GUO Fenzhuo, GAO Fei, et al. Private database queries based on counterfactual quantum key distribution[J]. Physical Review A, 2013, 88(2): 022334. doi: 10.1103/physreva.88.022334

    14. [14]

      SASAKI T, YAMAMOTO Y, and KOASHI M. Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 2014, 509(7501): 475–478. doi: 10.1038/nature13303

    15. [15]

      LIU Bin, GAO Fei, HUANG Wei, et al. QKD-based quantum private query without a failure probability[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 100301. doi: 10.1007/s11433-015-5714-3

    16. [16]

      WEI Chunyan, GAO Fei, WEN Qiaoyan, et al. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key -distribution protocol[J]. Scientific Reports, 2014, 4(1): 7537. doi: 10.1038/srep07537

    17. [17]

      PANDURANGA RAO M V and JAKOBI M. Towards communication-efficient quantum oblivious key distribution[J]. Physical Review A, 2013, 87(1): 012331. doi: 10.1103/PhysRevA.87.012331

    18. [18]

      GAO Fei, LIU Bin, HUANG Wei, et al. Postprocessing of the oblivious key in quantum private query[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 98–108. doi: 10.1109/jstqe.2014.2358192

    19. [19]

      WEI Chunyan, WANG Tianyin, and Gao Fei. Practical quantum private query with better performance in resisting joint-measurement attack[J]. Physical Review A, 2016, 93(4): 042318. doi: 10.1103/PhysRevA.93.042318

    20. [20]

      YU Fang, QIU Daowen, SITU Haozhen, et al. Enhancing user privacy in SARG04-based private database query protocols[J]. Quantum Information Processing, 2015, 14(11): 4201–4210. doi: 10.1007/s11128-015-1091-0

    21. [21]

      WEI Chunyan, CAI Xiaoqiu, LIU Bin, et al. A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure[J]. IEEE Transactions on Computers, 2018, 67(1): 2–8. doi: 10.1109/TC.2017.2721404

    22. [22]

      CHAN P, LUCIO-MARTINEZ I, MO Xiaofan, et al. Performing private database queries in a real-world environment using a quantum protocol[J]. Scientific Reports, 2014, 4(1): 5233. doi: 10.1038/srep05233

    23. [23]

      YAO A C C. How to generate and exchange secrets[C]. The 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 1986: 162–167. doi: 10.1109/SFCS.1986.25.

    24. [24]

      KILIAN J. Founding crytpography on oblivious transfer[C]. The 20th Annual ACM Symposium on Theory of Computing, Chicago, USA, 1988: 20–31. doi: 10.1145/62212.62215.

    25. [25]

      NIELSEN J B, NORDHOLT P S, ORLANDI C, et al. A new approach to practical active-secure two-party computation[C]. The 32nd Annual Cryptology Conference, Santa Barbara, USA, 2012: 681–700. doi: 10.1007/978-3-642-32009-5_40.

    26. [26]

      LO H K. Insecurity of quantum secure computations[J]. Physical Review A, 1998, 56(2): 1154–1162. doi: 10.1103/PhysRevA.56.1154

    27. [27]

      BENNETT C H and BRASSARD G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7–11. doi: 10.1016/j.tcs.2014.05.025

    1. [1]

      张胜军, 钟州, 金梁, 黄开枝. 基于安全极化码的密钥协商方法. 电子与信息学报,

    2. [2]

      金梁, 蔡奥林, 黄开枝, 钟州, 楼洋明. 基于多随机信号流的密钥生成方案. 电子与信息学报,

    3. [3]

      曾孝平, 余丰, 简鑫, 李诗琪, 杜得荣, 蒋欣, 方伟. 基于多点协作联合传输的超密集组网性能分析. 电子与信息学报,

    4. [4]

      屠袁飞, 苏清健, 杨庚. 一种适用于工业控制系统的加密传输方案. 电子与信息学报,

    5. [5]

      李雪莲, 王海玉, 高军涛, 李伟. 一种匿名可撤销的比特币混淆方案. 电子与信息学报,

    6. [6]

      周治平, 李智聪. 无可信第三方的数据匿名化收集协议. 电子与信息学报,

    7. [7]

      达新宇, 王浩波, 罗章凯, 胡航, 倪磊, 潘钰. 基于双层多参数加权类分数阶傅里叶变换的双极化卫星安全传输方案. 电子与信息学报,

    8. [8]

      谢显中, 黎佳, 黄倩, 陈杰. 机器类通信中基于NOMA短编码块传输的高可靠低迟延无线资源分配优化方案. 电子与信息学报,

    9. [9]

      王凯, 李星, 兰巨龙, 卫红权, 刘树新. 一种基于资源传输路径拓扑有效性的链路预测方法. 电子与信息学报,

    10. [10]

      张玉磊, 刘祥震, 郎晓丽, 张永洁, 陈文娟, 王彩芬. 云存储环境下多服务器的密钥聚合可搜索加密方案. 电子与信息学报,

    11. [11]

      谢敏, 曾琦雅. 轻量级分组密码算法ESF的相关密钥不可能差分分析. 电子与信息学报,

    12. [12]

      曹素珍, 郎晓丽, 刘祥震, 张玉磊, 王彩芬. 一种可证安全的PKI和IBC双向匿名异构签密方案的改进. 电子与信息学报,

  • 图 1  Liu等人的不经意密钥传输协议

  • 加载中
图(1)
计量
  • PDF下载量:  9
  • 文章访问数:  94
  • HTML全文浏览量:  73
文章相关
  • 通讯作者:  高飞, gaofei_bupt@hotmail.com
  • 收稿日期:  2019-09-04
  • 录用日期:  2019-11-12
  • 网络出版日期:  2019-11-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章