高级搜索

基于混合三角变异差分进化算法的平面稀疏阵列约束优化

陈志坤 杜康 彭冬亮 朱新挺

引用本文: 陈志坤, 杜康, 彭冬亮, 朱新挺. 基于混合三角变异差分进化算法的平面稀疏阵列约束优化[J]. 电子与信息学报, doi: 10.11999/JEIT190705 shu
Citation:  Zhikun CHEN, Kang DU, Dongliang PENG, Xinting ZHU. Planar Sparse Array Constraint Optimization Based on Hybrid Trigonometric Mutation Differential Evolution Algorithm[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190705 shu

基于混合三角变异差分进化算法的平面稀疏阵列约束优化

    作者简介: 陈志坤: 男,1982年生,博士,讲师,研究方向为雷达阵列信号处理与电子侦察;
    杜康: 男,1996年生,硕士生,研究方向为阵列优化与波束形成;
    彭冬亮: 男,1977年生,博士,教授,博士生导师,研究方向为信息融合;
    朱新挺: 男,1996年生,硕士生,研究方向为信号检测技术
    通讯作者: 杜康,dk@hdu.edu.cn
  • 基金项目: 国家自然科学基金(61701148)

摘要: 针对旁瓣零陷凹面约束的稀疏平面阵列优化及算法早熟等问题,该文基于参数自适应的思想,提出一种混合三角变异差分进化算法。通过引入旁瓣零陷凹面约束矩阵,构建自适应惩罚函数,时变权重组合变异策略与交叉策略,提高算法前期全局搜索能力和后期收敛能力,最终实现峰值旁瓣电平和旁瓣零陷凹面的平面阵列约束优化。仿真结果表明,对比混合三角变异策略前的算法,该算法在完成稀疏阵列峰值旁瓣电平优化的同时,能在指定旁瓣区域完成零陷凹面设计,降低有源干扰影响。

English

    1. [1]

      CHEN Kesong, CHEN Hui, WANG Ling, et al. Modified real GA for the synthesis of sparse planar circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 274–277. doi: 10.1109/LAWP.2015.2440432

    2. [2]

      DAI Dingcheng, YAO Minli, MA Hongguang, et al. An effective approach for the synthesis of uniformly excited large linear sparse array[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 377–380. doi: 10.1109/LAWP.2018.2790907

    3. [3]

      LIU Heng, ZHAO Hongwei, LI Weimei, et al. Synthesis of sparse planar arrays using matrix mapping and differential evolution[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1905–1908. doi: 10.1109/LAWP.2016.2542882

    4. [4]

      栾晓明, 尚兴荣. 稀布同心圆环阵列联合优化设计[J]. 战术导弹技术, 2017(3): 92–97. doi: 10.16358/j.issn.1009-1300.2017.03.16
      LUAN Xiaoming and SHANG Xingrong. Joint optimization design of sparse concentric ring arrays[J]. Tactical Missile Technology, 2017(3): 92–97. doi: 10.16358/j.issn.1009-1300.2017.03.16

    5. [5]

      KURUP D G, HIMDI M, and RYDBERG A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(9): 2210–2217. doi: 10.1109/TAP.2003.816361

    6. [6]

      赵光权, 彭喜元, 孙宁. 基于混合优化策略的微分进化改进算法[J]. 电子学报, 2006, 34(12A): 2402–2405.
      ZHAO Guangquan, PENG Xiyuan, and SUN Ning. A modified differential evolution algorithm with hybrid optimization strategy[J]. Acta Electronica Sinica, 2006, 34(12A): 2402–2405.

    7. [7]

      FAN Huiyuan and LAMPINEN J. A trigonometric mutation operation to differential evolution[J]. Journal of Global Optimization, 2003, 27(1): 105–129. doi: 10.1023/A:1024653025686

    8. [8]

      乔俊飞, 傅嗣鹏, 韩红桂. 基于混合变异策略的改进差分进化算法及函数优化[J]. 控制工程, 2013, 20(5): 943–947. doi: 10.14107/j.cnki.kzgc.2013.05.030
      QIAO Junfei, FU Sipeng, and HAN Honggui. A modified differential evolution algorithm based on hybrid mutation strategy for function optimization[J]. Control Engineering of China, 2013, 20(5): 943–947. doi: 10.14107/j.cnki.kzgc.2013.05.030

    9. [9]

      SHPAK D J. A method for the optimal pattern synthesis of linear arrays with prescribed nulls[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(3): 286–294. doi: 10.1109/8.486295

    10. [10]

      FARMANI R and WRIGHT J A. Self-adaptive fitness formulation for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445–455. doi: 10.1109/TEVC.2003.817236

    11. [11]

      刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721–729. doi: 10.13195/j.cd.2007.07.3.liub.001
      LIU Bo, WANG Ling, and JIN Yihui. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721–729. doi: 10.13195/j.cd.2007.07.3.liub.001

    12. [12]

      蔡海鸾, 郭学萍. 一种新的自适应惩罚函数在遗传算法中的应用[J]. 华东师范大学学报: 自然科学版, 2015(6): 36–45, 52.
      CAI Hailuan and GUO Xueping. A new adaptive penalty function in the application of genetic algorithm[J]. Journal of East China Normal University:Natural Science, 2015(6): 36–45, 52.

    13. [13]

      DAS S, KONAR A, and CHAKRABORTY U K. Two improved differential evolution schemes for faster global search[C]. The 7th Annual Conference on Genetic and Evolutionary Computation, Washington, 2005: 991–998. doi: 10.1145/1068009.1068177.

    1. [1]

      曹运合, 郭勇强, 刘帅, 刘玉涛. 基于旁瓣对消器的自适应零陷优化设计. 电子与信息学报,

    2. [2]

      刘子威, 苏洪涛, 胡勤振. 一种零陷展宽稳健旁瓣相消算法. 电子与信息学报,

    3. [3]

      范展, 梁国龙, 王逸林. 一种零陷展宽鲁棒自适应波束形成算法. 电子与信息学报,

    4. [4]

      杜永兆, 范宇凌, 柳培忠, 唐加能, 骆炎民. 多种群协方差学习差分进化算法. 电子与信息学报,

    5. [5]

      宋虎, 蒋迺倜, 刘溶, 李洪涛. 基于稀疏采样阵列优化的APG-MUSIC算法. 电子与信息学报,

    6. [6]

      陈沛, 赵拥军, 刘成城. 基于稀疏重构的共形阵列稳健自适应波束形成算法. 电子与信息学报,

    7. [7]

      曾云宝, 黄才试, 彭涛, 王文博. 一种利用幅值抖动形成阵列零陷的方法. 电子与信息学报,

    8. [8]

      赵菲, 齐会颖, 邱磊, 柴舜连, 毛钧杰. 自适应动态Meta粒子群优化算法综合多方向图共形阵列. 电子与信息学报,

    9. [9]

      施孝盼, 洪涛. 基于凸优化的稀疏阵列方向调制信号综合算法研究. 电子与信息学报,

    10. [10]

      高鹰, 谢胜利. 基于泛函连接网络和差分进化算法的后非线性混叠信号盲分离方法. 电子与信息学报,

    11. [11]

      杨京礼, 许永辉, 魏长安, 姜守达. 基于微分进化的信息物理融合系统网关优化部署方法. 电子与信息学报,

    12. [12]

      卢丹, 葛璐, 王文益, 王璐, 贾琼琼, 吴仁彪. 基于空时降维处理的高动态零陷加宽算法. 电子与信息学报,

    13. [13]

      李文兴, 毛晓军, 孙亚秀. 一种新的波束形成零陷展宽算法. 电子与信息学报,

    14. [14]

      马晓峰, 陆乐, 盛卫星, 韩玉兵, 张仁李. 干扰子空间正交投影快速零陷跟踪波束赋形算法. 电子与信息学报,

    15. [15]

      曹凯, 陈国虎, 江桦, 马欢. 自适应引导进化遗传算法. 电子与信息学报,

    16. [16]

      严韬, 陈建文, 鲍拯. 基于改进遗传算法的天波超视距雷达二维阵列稀疏优化设计. 电子与信息学报,

    17. [17]

      徐涛, 郭威, 吕宗磊. 基于快速极限学习机和差分进化的机场噪声预测模型. 电子与信息学报,

    18. [18]

      高鹰, 谢胜利. 梯度向量正交的相关函数自适应滤波算法. 电子与信息学报,

    19. [19]

      陈晓峰, 王士同, 曹苏群. 自适应误差惩罚支撑向量回归机. 电子与信息学报,

    20. [20]

      侯志强, 王鑫, 余旺盛, 戴铂, 金泽芬芬. 基于自适应深度稀疏网络的在线跟踪算法. 电子与信息学报,

  • 图 1  稀疏阵列3维方向图

    图 2  算法收敛曲线对比和稀疏阵元分布

    图 3  可行解比例和$u = 0$比平面方向图

    图 4  稀疏阵列3维方向图

    图 5  算法收敛曲线和稀疏阵元分布

    图 6  可行解比例和$u = 0$平面方向图

    表 1  最大零陷深度约束为45时旁瓣零陷凹面增益(c = 1)

    序号123456789
    $p$505050515151525252
    $q$505152505152505152
    增益(dB)–41.7232–47.8437–43.4869–41.2586–53.0450–44.7019–43.8560–46.1852–46.9309
    下载: 导出CSV

    表 2  最大零陷深度约束为50时旁瓣零陷凹面增益(c = 1)

    序号123456789
    $p$505050515151525252
    $q$505152505152505152
    增益(dB)–46.6703–45.7740–42.0270–43.5748–55.1658–43.9545–42.9269–49.6869–45.4186
    下载: 导出CSV

    表 3  最大零陷深度约束为55时旁瓣零陷凹面增益(c = 1)

    序号123456789
    $p$505050515151525252
    $q$505152505152505152
    增益(dB)–46.4656–47.1974–43.3241–47.4544–58.0909–43.7558–55.5215–48.7782–45.2064
    下载: 导出CSV

    表 4  最大零陷深度约束为45时旁瓣零陷凹面增益($c = 2$)

    序号123456789
    p494949494950505050
    q495051525349505152
    增益(dB)–46.5458–45.8412–46.2580–40.8917–40.9214–49.3585–55.9305–47.3353–42.1900
    序号101112131415161718
    p505151515151525252
    q534950515253495051
    增益(dB)–42.6126–43.5500–51.2554–49.3633–44.1652–43.3289–44.5767–60–60
    序号19202122232425
    p52525353535353
    q52534950515253
    增益(dB)–45.5003–42.0649–46.5876–45.0475–48.2879–44.7265–41.0207
    下载: 导出CSV

    表 5  最大零陷深度约束为50时旁瓣零陷凹面增益($c = 2$)

    序号123456789
    p494949494950505050
    q495051525349505152
    增益(dB)–37.6175–40.3846–45.7498–48.2500–43.6255–36.8799–41.7660–49.6858–45.8806
    序号101112131415161718
    p505151515151525252
    q534950515253495051
    增益(dB)–41.8181–37.2718–43.5080–60–45.8777–39.6356–39.5716–45.9265–60
    序号19202122232425
    $p$52525353535353
    $q$52534950515253
    增益(dB)–47.8587–39.4033–43.4406–50.7166–60–51.4716–40.3799
    下载: 导出CSV

    表 6  最大零陷深度约束为55时旁瓣零陷凹面增益($c = 2$)

    序号123456789
    p494949494950505050
    q495051525349505152
    增益(dB)–44.8401–46.0399–39.5838–38.3594–45.4208–54.4196–59.5659–43.2692–43.0806
    序号101112131415161718
    p505151515151525252
    q534950515253495051
    增益(dB)–51.9257–41.3720–45.5307–55.5682–49.6248–40.8617–36.9498–40.1514–48.4430
    序号19202122232425
    $p$52525353535353
    $q$52534950515253
    增益(dB)–43.0303–37.3386–35.2466–38.9316–46.3749–42.4130–37.3552
    下载: 导出CSV
  • 加载中
图(6)表(6)
计量
  • PDF下载量:  2
  • 文章访问数:  55
  • HTML全文浏览量:  35
文章相关
  • 通讯作者:  杜康, dk@hdu.edu.cn
  • 收稿日期:  2019-09-10
  • 录用日期:  2019-11-28
  • 网络出版日期:  2020-01-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章