高级搜索

工业互联网低功耗数据链算法设计综述——联合信源信道编码设计的必要性、现实与前景

王琳 刘三亚 陈辰 陈启望

引用本文: 王琳, 刘三亚, 陈辰, 陈启望. 工业互联网低功耗数据链算法设计综述——联合信源信道编码设计的必要性、现实与前景[J]. 电子与信息学报, 2020, 42(1): 249-262. doi: 10.11999/JEIT190762 shu
Citation:  Lin WANG, Sanya LIU, Chen CHEN, Qiwang CHEN. Overview of Low Power Data Link Algorithms Design for Industrial Internet——Necessity, Reality and Prospect of JSCC Design[J]. Journal of Electronics and Information Technology, 2020, 42(1): 249-262. doi: 10.11999/JEIT190762 shu

工业互联网低功耗数据链算法设计综述——联合信源信道编码设计的必要性、现实与前景

    作者简介: 王琳: 男,1963年生,教授,研究方向为信息论与宽带无线通信理论;
    刘三亚: 女,1988年生,博士生,研究方向为联合信源信道编码;
    陈辰: 女,1990年生,讲师,研究方向为联合信源信道编码;
    陈启望: 男,1990年生,讲师,研究方向为联合信源信道编码
    通讯作者: 刘三亚,sanyaliu1106@gmail.com
  • 基金项目: 国家自然科学基金(61671395)

摘要: 原模图低密度奇偶校验(P-LDPC)码已经广泛应用于各种通信系统,为了使其能够满足不同应用场景下系统对纠错性能、硬件资源损耗以及功耗等方面的要求,需要对P-LDPC码进行进一步的设计优化。该文主要从标准信道环境下基于双P-LDPC(DP-LDPC)码的联合信源信道编码(JSCC)系统的属性研究、系统设计优化以及性能表现等角度入手,对近些年出现的针对该系统环境所做的优化分析工作进行了综述。表明进行的优化工作属实显著地改善了系统性能,为面向工业互联网(II)的LDPC码的研究工作提供些许思路。最后,该文对未来的研究工作进行了展望,为感兴趣的研究学者提供参考以继续推进。

English

    1. [1]

      LIN Jie, YU Wei, ZHANG Nan, et al. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications[J]. IEEE Internet of Things Journal, 2017, 4(5): 1125–1142. doi: 10.1109/JIOT.2017.2683200

    2. [2]

      GUYADER A, FABRE E, GUILLEMOT C, et al. Joint source-channel turbo decoding of entropy-coded sources[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1680–1696. doi: 10.1109/49.947033

    3. [3]

      周延蕾, 梁钊, 蒙山, 等. 信源信道联合编码的一种方法[J]. 电子与信息学报, 2001, 23(11): 1110–1115.
      ZHOU Yanlei, LIANG Zhao, MENG Shan, et al. A joint sourie/channel coding design[J]. Journal of Electronics &Information Technology, 2001, 23(11): 1110–1115.

    4. [4]

      PU Lingling, WU Zhenyu, BILGIN A, et al. LDPC-based iterative joint source-channel decoding for JPEG2000[J]. IEEE Transactions on Image Processing, 2007, 16(2): 577–581. doi: 10.1109/TIP.2006.888329

    5. [5]

      RICHARDSON T, SHOKRROLLAHI A, and URBANKE R. Design of capacity-approaching irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 619–637. doi: 10.1109/18.910578

    6. [6]

      DEL SER J, CRESPO P M, ESNAOLA I, et al. Joint source-channel coding of sources with memory using Turbo codes and the burrows-wheeler transform[J]. IEEE Transactions on Communications, 2010, 58(7): 1984–1992. doi: 10.1109/TCOMM.2010.07.090141

    7. [7]

      BI Chongyuan and LIANG Jie. Joint source-channel coding of JPEG 2000 image transmission over two-way multi-relay networks[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3594–3608. doi: 10.1109/TIP.2017.2700765

    8. [8]

      洪少华, 王琳. 基于原模图LDPC码的分布式联合信源信道编码[J]. 电子与信息学报, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113
      HONG Shaohua and WANG Lin. Protograph LDPC based distributed joint source channel coding[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113

    9. [9]

      CALLAGER R G. Low-Density Parity-Check Codes[M]. Cambridge: MIT Press, 1963.

    10. [10]

      TANNER R. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533–547. doi: 10.1109/TIT.1981.1056404

    11. [11]

      MACKAY D J C and NEAL R M. Good codes based on very sparse matrices[C]. The 5th IMA International Conference on Cryptography and Coding, Cirencester, UK, 1995: 100–111.

    12. [12]

      SPIELMAN D A. Linear-time encodable and decodable error-correcting codes[J]. IEEE Transactions on Information Theory, 1996, 42(6): 1723–1731. doi: 10.1109/18.556668

    13. [13]

      ALON N and LUBY M. A linear time erasure-resilient code with nearly optimal recovery[J]. IEEE Transactions on Information Theory, 1996, 42(6): 1732–1736. doi: 10.1109/18.556669

    14. [14]

      SIPSER M and SPIELMAN D A. Expander codes[J]. IEEE Transactions on Information Theory, 1996, 42(6): 1710–1722. doi: 10.1109/18.556667

    15. [15]

      MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1997, 33(6): 457–458. doi: 10.1049/el:19970362

    16. [16]

      LUBY M G, MITZENMACHER M, SHOKROLLAHI M A, et al. Practical loss-resilient codes[C]. The 29th ACM Symposium on Theory of Computing, El Paso, 1997: 150–159.

    17. [17]

      DAVEY M C and MACKAY D. Low-density parity check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6): 165–167. doi: 10.1109/4234.681360

    18. [18]

      MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45(2): 399–431. doi: 10.1109/18.748992

    19. [19]

      MACKAY D J C, WILSON S T, and DAVEY M C. Comparison of constructions of irregular Gallager codes[J]. IEEE Transactions on Communications, 1999, 47(10): 1449–1454. doi: 10.1109/26.795809

    20. [20]

      RICHARDSON T J and URBANKE R L. The capacity of low-density parity-check codes under message-passing decoding[J]. IEEE Transactions on Information Theory, 2001, 47(2): 599–618. doi: 10.1109/18.910577

    21. [21]

      RICHARDSON T J and URBANKE R L. Efficient encoding of low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 638–656. doi: 10.1109/18.910579

    22. [22]

      RICHARDSON T and URBANKE R. The renaissance of Gallager’s low-density parity-check codes[J]. IEEE Communications Magazine, 2003, 41(8): 126–131. doi: 10.1109/MCOM.2003.1222728

    23. [23]

      ZYABLOV V V and PINSKER M S. Estimation of the error-correction complexity for Gallager low-density codes[J]. Problemy Peredachi Informatsii, 1975, 11(1): 23–26.

    24. [24]

      MARGULIS G A. Explicit constructions of graphs without short cycles and low density codes[J]. Combinatorica, 1982, 2(1): 71–78. doi: 10.1007/BF02579283

    25. [25]

      TEN BRINK S. Convergence behavior of iteratively decoded parallel concatenated codes[J]. IEEE Transactions on Communications, 2001, 49(10): 1727–1737. doi: 10.1109/26.957394

    26. [26]

      TEN BRINK S, KRAMER G, and ASHIKHMIN A. Design of low-density parity-check codes for modulation and detection[J]. IEEE Transactions on Communications, 2004, 52(4): 670–678. doi: 10.1109/TCOMM.2004.826370

    27. [27]

      ASHIKHMIN A, KRAMER G, and TEN BRINK S. Extrinsic information transfer functions: Model and erasure channel properties[J]. IEEE Transactions on Information Theory, 2004, 50(11): 2657–2673. doi: 10.1109/TIT.2004.836693

    28. [28]

      FRANCESCHINI M, FERRARI G, and RAHELI R. Does the performance of LDPC codes depend on the channel?[J]. IEEE Transactions on Communications, 2006, 54(12): 2129–2132. doi: 10.1109/TCOMM.2006.885042

    29. [29]

      PENG F, RYAN W E, and WESEL R D. Surrogate-channel design of universal LDPC codes[J]. IEEE Communications Letters, 2006, 10(6): 480–482. doi: 10.1109/LCOMM.2006.1638622

    30. [30]

      XIAO Hua and BANIHASHEMI A H. Improved progressive-edge-growth (PEG) construction of irregular LDPC codes[J]. IEEE Communications Letters, 2004, 8(12): 715–717. doi: 10.1109/LCOMM.2004.839612

    31. [31]

      HU Xiaoyu, ELEFTHERIOU E, and ARNOLD D M. Regular and irregular progressive edge-growth tanner graphs[J]. IEEE Transactions on Information Theory, 2005, 51(1): 386–398. doi: 10.1109/TIT.2004.839541

    32. [32]

      RICHTER G and HOF A. On a construction method of irregular LDPC codes without small stopping sets[C]. 2006 IEEE International Conference on Communications, Istanbul, Turkey, 2006: 1119–1124. doi: 10.1109/ICC.2006.254897.

    33. [33]

      周琳, 吴镇扬. 迭代结构的信源信道联合解码及其简化算法[J]. 电子与信息学报, 2009, 31(10): 2427–2431.
      ZHOU Lin and WU Zhenyang. Simplified iterative joint source-channel decoding algorithm[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2427–2431.

    34. [34]

      ZHENG Xia, LAU F C M, and TSE C K. Constructing short-length irregular LDPC codes with low error floor[J]. IEEE Transactions on Communications, 2010, 58(10): 2823–2834. doi: 10.1109/TCOMM.2010.083110.080638

    35. [35]

      BONELLO N, CHEN Sheng, and HANZO L. Low-density parity-check codes and their rateless relatives[J]. IEEE Communications Surveys & Tutorials, 2011, 13(1): 3–26. doi: 10.1109/SURV.2011.040410.00042

    36. [36]

      MOURA J M F, LU Jin, and ZHANG Haotian. Structured low-density parity-check codes[J]. IEEE Signal Processing Magazine, 2004, 21(1): 42–55. doi: 10.1109/MSP.2004.1267048

    37. [37]

      LIVA G, SONG Shumei, LAN Lan, et al. Design of LDPC codes: A survey and new results[J]. Journal of Communications Software and Systems, 2006, 2(3): 191–211. doi: 10.24138/jcomss.v2i3.283

    38. [38]

      EL-HAJJAR M and HANZO L. EXIT charts for system design and analysis[J]. IEEE Communications Surveys & Tutorials, 2014, 16(1): 127–153. doi: 10.1109/SURV.2013.050813.00137

    39. [39]

      YAZDANI M R, HEMATI S, and BANIHASHEMI A H. Improving belief propagation on graphs with cycles[J]. IEEE Communications Letters, 2004, 8(1): 57–59. doi: 10.1109/LCOMM.2003.822499

    40. [40]

      TAGHAVI M H and SIEGEL P H. Adaptive methods for linear programming decoding[J]. IEEE Transactions on Information Theory, 2008, 54(12): 5396–5410. doi: 10.1109/TIT.2008.2006384

    41. [41]

      BURSHTEIN D and MILLER G. Asymptotic enumeration methods for analyzing LDPC codes[J]. IEEE Transactions on Information Theory, 2004, 50(6): 1115–1131. doi: 10.1109/TIT.2004.828064

    42. [42]

      LITSYN S and SHEVELEV V. Distance distributions in ensembles of irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2003, 49(12): 3140–3159. doi: 10.1109/TIT.2003.820012

    43. [43]

      VARNICA N, FOSSORIER M P C, and KAVCIC A. Augmented belief propagation decoding of low-density parity check codes[J]. IEEE Transactions on Communications, 2007, 55(7): 1308–1317. doi: 10.1109/TCOMM.2007.900611

    44. [44]

      KIM K J, CHUNG J H, and YANG K. Bounds on the size of parity-check matrices for quasi-cyclic low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7288–7298. doi: 10.1109/TIT.2013.2279831

    45. [45]

      TASDIGHI A, BANIHASHEMI A H, and SADEGHI M R. Efficient search of girth-optimal QC-LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(4): 1552–1564. doi: 10.1109/TIT.2016.2523979

    46. [46]

      STEINER F, BÖCHERER G, and LIVA G. Protograph-based LDPC code design for shaped bit-metric decoding[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 397–407. doi: 10.1109/JSAC.2015.2504298

    47. [47]

      MU Xijin, SHEN Conghui, and BAI Baoming. A combined algebraic- and graph-based method for constructing structured RC-LDPC codes[J]. IEEE Communications Letters, 2016, 20(7): 1273–1276. doi: 10.1109/LCOMM.2016.2558152

    48. [48]

      ANDREWS K S, DIVSALAR D, DOLINAR S, et al. The development of turbo and LDPC codes for deep-space applications[J]. Proceedings of the IEEE, 2007, 95(11): 2142–2156. doi: 10.1109/JPROC.2007.905132

    49. [49]

      CALZOLARI G P, CHIANI M, CHIARALUCE F, et al. Channel coding for future space missions: New requirements and trends[J]. Proceedings of the IEEE, 2007, 95(11): 2157–2170. doi: 10.1109/JPROC.2007.905134

    50. [50]

      UCHOA A G D, HEALY C T, and DE LAMARE R C. Iterative detection and decoding algorithms for MIMO systems in block-fading channels using LDPC codes[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2735–2741. doi: 10.1109/TVT.2015.2432099

    51. [51]

      DJORDJEVIC I B. On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport[J]. Journal of Lightwave Technology, 2013, 31(16): 2669–2675. doi: 10.1109/JLT.2013.2272328

    52. [52]

      RAFATI A, LOU Huang, and XIAO Chengshan. Soft-decision feedback turbo equalization for LDPC-coded MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 90–99. doi: 10.1109/JOE.2013.2241933

    53. [53]

      SONG H, TODD R M, and CRUZ J R. Low density parity check codes for magnetic recording channels[J]. IEEE Transactions on Magnetics, 2000, 36(5): 2183–2186. doi: 10.1109/20.908351

    54. [54]

      KURKOSKI B M, SIEGEL P H, and WOLF J K. Joint message-passing decoding of LDPC codes and partial-response channels[J]. IEEE Transactions on Information Theory, 2002, 48(6): 1410–1422. doi: 10.1109/TIT.2002.1003830

    55. [55]

      KSCHISCHANG F R. Codes defined on graphs[J]. IEEE Communications Magazine, 2003, 41(8): 118–125. doi: 10.1109/MCOM.2003.1222727

    56. [56]

      LIN Shu and COSTELLO D J. Error Control Coding: Fundamentals and Applications[M]. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004.

    57. [57]

      RYAN W E. An Introduction to LDPC Codes[M]. VASIC B. CRC Handbook for Coding and Signal Processing for Recording Systems. Boca Raton: CRC Press, 2004.

    58. [58]

      RICHARDSON T and URBANKE R. Modern Coding Theory[M]. Cambridge, UK: Cambridge University Press, 2008.

    59. [59]

      RICHARDSON T and URBANKE R. Multi-edge type LDPC codes (2004)[EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7310, 2002.

    60. [60]

      THORPE J. Low-Density Parity-Check (LDPC) codes constructed from protographs[R]. IPN Progress Report, 2003: 42–154.

    61. [61]

      DIVSALAR D, JONES C, DOLINAR S, et al. Protograph based LDPC codes with minimum distance linearly growing with block size[C]. 2005 IEEE Global Telecommunications Conference, St. Louis, France, 2005: 1152–1156.

    62. [62]

      ABBASFAR A, DIVSALAR D, and YAO K. Accumulate-repeat-accumulate codes[J]. IEEE Transactions on Communications, 2007, 55(4): 692–702. doi: 10.1109/TCOMM.2007.894109

    63. [63]

      DIVSALAR D, DOLINAR S, JONES C R, et al. Capacity-approaching protograph codes[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 876–888. doi: 10.1109/JSAC.2009.090806

    64. [64]

      VAN NGUYEN T, NOSRATINIA A, and DIVSALAR D. Bilayer protograph codes for half-duplex relay channels[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1969–1977. doi: 10.1109/TWC.2013.040413.111745

    65. [65]

      FANG Yi, GUAN Yongliang, BI Guoan, et al. Rate-compatible root-protograph LDPC codes for quasi-static fading relay channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2741–2747. doi: 10.1109/TVT.2015.2420570

    66. [66]

      VAN NGUYEN T. Design of capacity-approaching protograph-based LDPC coding systems[D]. [Ph. D. dissertation], The University of Texas at Dallas, 2012.

    67. [67]

      FANG Yi, BI Guoan, and GUAN Yongliang. Design and analysis of root-protograph LDPC codes for non-ergodic block-fading channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 738–749. doi: 10.1109/TWC.2014.2359221

    68. [68]

      KARIMI M and BANIHASHEMI A H. On the girth of quasi-cyclic protograph LDPC codes[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4542–4552. doi: 10.1109/TIT.2013.2251395

    69. [69]

      LIVA G and CHIANI M. Protograph LDPC codes design based on EXIT analysis[C]. 2007 IEEE Global Telecommunications Conference, Washington, USA, 2007: 3250–3254.

    70. [70]

      FRESIA M, PERÉZ-CRUZ F, POOR H V, et al. Joint source and channel coding[J]. IEEE Signal Processing Magazine, 2010, 27(6): 104–113.

    71. [71]

      HE Jiguang, WANG Lin, and CHEN Pingping. A joint source and channel coding scheme base on simple protograph structured codes[C]. 2012 International Symposium on Communications and Information Technologies, Gold Coast, 2012: 65–69.

    72. [72]

      WANG Lin, WU Huihui, and HONG Shaohua. The sensitivity of joint source-channel coding based on double protograph LDPC codes to source statistics[C]. The 9th International Symposium on Medical Information and Communication Technology, Kamakura, Japan, 2015: 213–217.

    73. [73]

      WU Huihui, WANG Lin, and HONG Shaohua, et al. Performance of joint source-channel coding based on protograph LDPC codes over rayleigh fading channels[J]. IEEE Communications Letters, 2014, 18(4): 652–655. doi: 10.1109/LCOMM.2014.022714.140112

    74. [74]

      CHEN Chen, WANG Lin, and XIONG Zixiang. Matching criterion between source statistics and source coding rate[J]. IEEE Communications Letters, 2015, 19(9): 1504–1507. doi: 10.1109/LCOMM.2015.2454505

    75. [75]

      CHEN Qiwang, WANG Lin, HONG Shaohua, et al. Performance improvement of JSCC scheme through redesigning channel code[J]. IEEE Communications Letters, 2016, 20(6): 1088–1091. doi: 10.1109/LCOMM.2016.2554543

    76. [76]

      CHEN Chen, WANG Lin, and LIU Sanya. The design of protograph LDPC codes as source codes in a JSCC system[J]. IEEE Communications Letters, 2018, 22(4): 672–675. doi: 10.1109/LCOMM.2018.2804382

    77. [77]

      NETO H V B and HENKEL W. Multi-edge optimization of low-density parity-check codes for joint source-channel coding[C]. The 9th International ITG Conference on Systems, Communication and Coding, München, Deutschland, 2013: 1–6.

    78. [78]

      HONG Shaohua, CHEN Qiwang, and WANG Lin. Performance analysis and optimisation for edge connection of JSCC system based on double protograph LDPC codes[J]. IET Communications, 2018, 12(2): 214–219. doi: 10.1049/iet-com.2017.0787

    79. [79]

      LIU Sanya, CHEN Chen, WANG Lin, et al. Edge connection optimization for JSCC system based on DP-LDPC codes[J]. IEEE Wireless Communications Letters, 2019, 8(4): 996–999. doi: 10.1109/LWC.2019.2903442

    80. [80]

      CHEN Chen, WANG Lin, and LAU F C M. Joint optimization of protograph LDPC code pair for joint source and channel coding[J]. IEEE Transactions on Communications, 2018, 66(8): 3255–3267. doi: 10.1109/TCOMM.2018.2814603

    81. [81]

      CHEN Qiwang, WANG Lin, HONG Shaohua, et al. Integrated design of JSCC scheme based on double protograph LDPC codes system[J]. IEEE Communications Letters, 2019, 23(2): 218–221. doi: 10.1109/LCOMM.2018.2890243

    82. [82]

      XU Liangliang, WANG Lin, HONG Shaohua, et al. New results on radiography image transmission with unequal error protection using protograph double LDPC codes[C]. The 8th International Symposium on Medical Information and Communication Technology, Firenze, Italy, 2014: 1–4.

    83. [83]

      CHEN Qiwang, WANG Lin, and HONG Shaohua. An image pre-processing approach for JSCC scheme based on double protograph LDPC codes[C]. The 16th International Symposium on Communications and Information Technologies, Qingdao, China, 2016: 109–112.

    84. [84]

      DENG Li, SHI Zhiping, LI Ouxun, et al. Joint coding and adaptive image transmission scheme based on DP-LDPC codes for IoT scenarios[J]. IEEE Access, 2019, 7: 18437–18449. doi: 10.1109/ACCESS.2019.2895368

    85. [85]

      RAHNAVARD N and FEKRI F. New results on unequal error protection using LDPC codes[J]. IEEE Communications Letters, 2006, 10(1): 43–45. doi: 10.1109/LCOMM.2006.1576564

    86. [86]

      SHOKROLLAHI A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551–2567. doi: 10.1109/TIT.2006.874390

    87. [87]

      ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379

    88. [88]

      陶雄飞, 王跃东, 柳盼. 基于变量节点更新的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720
      TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics &Information Technology, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720

    89. [89]

      鄢懿, 张灿, 郭振永, 等. 基于混沌密钥控制的联合信源信道与安全算术码编译码算法[J]. 电子与信息学报, 2016, 38(10): 2553–2559. doi: 10.11999/JEIT151429
      YAN Yi, ZHANG Can, GUO Zhenyong, et al. Joint source channel and security arithmetic coding controlled by chaotic keys[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2553–2559. doi: 10.11999/JEIT151429

    90. [90]

      吕毅博, 胡伟, 王琳. Beyond-BP译码算法综述: 原理与应用[J]. 电子与信息学报, 2017, 39(6): 1503–1514. doi: 10.11999/JEIT161288
      LÜ Yibo, HU Wei, and WANG Lin. Survey of Beyond-BP decoding algorithms: Theory and applications[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1503–1514. doi: 10.11999/JEIT161288

    1. [1]

      唐伦, 肖娇, 魏延南, 赵国繁, 陈前斌. 基于云雾混合计算的车联网联合资源分配算法. 电子与信息学报, 2020, 42(0): 1-8.

    2. [2]

      陈华, 习伟, 范丽敏, 焦志鹏, 冯婧怡. 密码产品的侧信道分析与评估. 电子与信息学报, 2020, 42(0): 1-10.

    3. [3]

      谢永, 李香, 张松松, 吴黎兵. 一种可证安全的车联网无证书聚合签名改进方案. 电子与信息学报, 2020, 42(5): 1125-1131.

    4. [4]

      贾连印, 陈明鲜, 李孟娟, 游进国, 丁家满. 基于状态视图的高效Hilbert编码和解码算法. 电子与信息学报, 2020, 42(6): 1494-1501.

    5. [5]

      江小平, 王妙羽, 丁昊, 李成华. 基于信道状态信息幅值-相位的被动式室内指纹定位. 电子与信息学报, 2020, 42(5): 1165-1171.

    6. [6]

      周义明, 李英顺, 田小平. 基于瑞利多径衰落信道的信号包络频谱感知. 电子与信息学报, 2020, 42(5): 1231-1236.

    7. [7]

      席博, 洪涛, 张更新. 卫星物联网场景下基于节点选择的协作波束成形技术研究. 电子与信息学报, 2020, 42(0): 1-9.

    8. [8]

      张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略. 电子与信息学报, 2020, 42(6): 1444-1451.

    9. [9]

      陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法. 电子与信息学报, 2020, 42(6): 1486-1493.

    10. [10]

      张凯, 陈彬, 许志伟. 基于多目标进化策略算法的DNA核酸编码设计. 电子与信息学报, 2020, 42(6): 1365-1373.

    11. [11]

      牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法. 电子与信息学报, 2020, 42(6): 1383-1391.

    12. [12]

      宋人杰, 张元东. 基于感兴趣区域的高性能视频编码帧内预测优化算法. 电子与信息学报, 2020, 42(0): 1-7.

    13. [13]

      高巍, 蒋刚毅, 郁梅, 骆挺. 基于熵编码的立体视频加密与信息隐藏算法. 电子与信息学报, 2020, 41(0): 1-8.

    14. [14]

      唐伦, 魏延南, 谭颀, 唐睿, 陈前斌. H-CRAN网络下联合拥塞控制和资源分配的网络切片动态资源调度策略. 电子与信息学报, 2020, 42(5): 1244-1252.

    15. [15]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    16. [16]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    17. [17]

      王一宾, 裴根生, 程玉胜. 基于标记密度分类间隔面的组类属属性学习. 电子与信息学报, 2020, 42(5): 1179-1187.

    18. [18]

      陈容, 陈岚, WAHLAArfan Haider. 基于公式递推法的可变计算位宽的循环冗余校验设计与实现. 电子与信息学报, 2020, 42(5): 1261-1267.

  • 图 1  基于DP-LDPC码的JSCC系统框图

    图 2  基于P-LDPC码的JSCC系统的编码Tanner图

    图 3  不同熵值、不同传输码率时基于DP-LDPC码的JSCC系统BER性能

    图 4  图像高频部分使用基于DP-LDPC的JSCC系统进行处理的不等保护传输系统框图

    图 5  SNR=0 dB时不同不等保护方案下恢复出的图像

    图 6  基于DP-LDPC码的JSCC系统采用不同信源P-LDPC码的BER性能对比(码率为1/2)

    图 7  基于DP-LDPC码的JSCC系统采用不同信源P-LDPC码的BER性能对比(码率为1/3和1/4)

    图 8  基于DP-LDPC码的JSCC系统采用不同的信道P-LDPC码的BER性能对比(${{B}}_{\rm{L2}}=0$, $p(1) = 0.010$)

    图 9  基于DP-LDPC码的JSCC系统采用不同的信道P-LDPC码的BER性能对比(${{{B}}_{{\rm{L2}}}} \ne 0$, $p(1) = 0.020$)

    图 10  当信源统计概率$p(1) = 0.0{\rm{8}}$$p(1) = 0.0{\rm{5}}$时,提出的搜索算法与传统优化方法的仿真结果对比

    图 11  信源译码器与信道译码器之间的互信息迭代译码框图

    图 12  (R4JA, AR4JA)与针对渐近无限长码设计的码型BER性能对比

    图 13  (R4JA, AR4JA) 与针对中短长码设计的码型BER性能对比 (L=3200)

    图 14  不同$ {{{B}}_{\rm{J}}}$在统计概率为$p(1) = 0.01$时的BER性能对比

    图 15  不同$ {{{B}}_{\rm{J}}}$在统计概率为$p(1) = 0.04$时的BER性能对比

    表 1  不同信源统计特性以及不同信道编码矩阵在基于DP-LDPC码的JSCC系统下对应的译码门限值

    ${p_{(1)}} = 0.010$${p_{(1)}} = 0.015$${p_{(1)} } = 0.020$
    BAR4JA–2.524–1.450–0.632
    BIARA–1–3.145–1.984–1.155
    BAR3A–3.248–1.910–0.965
    BIARA–2–3.438–2.254–1.379
    下载: 导出CSV

    表 2  针对${{{B}}_{\rm{L1}}}$的搜索算法

     (1) 给出$p(1)$, ${{{B}}_{\rm{s}}}$, ${{{B}}_{\rm{c}}}$,且有${{{B}}_{\rm{L2}}}=0$;
     (2) 初始化化${{{B}}_{\rm{L1}}}=0$;
     (3) 合并${{{B}}_{\rm{s}}}$, ${{{B}}_{\rm{c}}}$, ${{{B}}_{\rm{L1}}}$和${{{B}}_{\rm{L2}}}$,即为初始的${{{B}}_{\rm{J}}}$;
     (4) ${{{B}}_{{\rm{J}}\_{\rm{min}}}} \leftarrow {{{B}}_{\rm{J}}}$, $\delta \left( {{{{B}}_{{\rm{J}}\_{\rm{min}}}},p(1)} \right) \leftarrow \delta \left( {{{{B}}_{\rm{J}}},p(1)} \right)$;
     (5) 如果$p(1) < p{(1)^{{\rm{st}}}}$
     (6) 遍历除去信道码中的预编码器的所有的链接;
     (7) 根据约束条件式(2)改变${{{B}}_{\rm{L1}}}$;
     (8) 如果$ \delta \left( {{{{B}}_{\rm{J}}},p(1)} \right) < \delta \left( {{{{B}}_{{\rm{J}}\_ {\rm{min}}}},p(1)} \right)$
     (9) ${{{B}}_{{\rm{J}}\_ {\rm{min}}}} \leftarrow {{{B}}_{\rm{J}}}$, $\delta \left( {{{{B}}_{{\rm{J}}\_{\rm{min}}}},p(1)} \right) \leftarrow \delta \left( {{{{B}}_{\rm{J}}},p(1)} \right)$;
     (10) 输出:${{{B}}_{{\rm{J}}\_ {\rm{min}}}}$, $\delta \left( {{{{B}}_{{\rm{J}}\_ {\rm{min}}}},p(1)} \right)$
    下载: 导出CSV
  • 加载中
图(15)表(2)
计量
  • PDF下载量:  22
  • 文章访问数:  985
  • HTML全文浏览量:  388
文章相关
  • 通讯作者:  刘三亚, sanyaliu1106@gmail.com
  • 收稿日期:  2019-10-08
  • 录用日期:  2019-11-16
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2020-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章