高级搜索

区块链用户匿名与可追踪技术

李佩丽 徐海霞

引用本文: 李佩丽, 徐海霞. 区块链用户匿名与可追踪技术[J]. 电子与信息学报, doi: 10.11999/JEIT190813 shu
Citation:  Peili LI, Haixia XU. Blockchain User Anonymity and Traceability Technology[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190813 shu

区块链用户匿名与可追踪技术

    作者简介: 李佩丽: 女,1988年生,助理研究员,研究方向为密码学、区块链隐私保护与监管;
    徐海霞: 女,1973年生,副研究员,研究方向为安全多方计算、区块链隐私保护与监管、共识机制
    通讯作者: 徐海霞,xuhaixia@iie.ac.cn
  • 基金项目: 国家重点研发计划(2017YFB0802500),北京市科技计划(Z191100007119007),山东省重大科技创新工程(2019JZZY020129)

摘要: 区块链具有透明性、数据完整性、防篡改等优点,在金融、政府、军事等领域有重要应用价值。目前有越来越多的工作研究区块链的隐私保护问题,典型的包括门罗币、Zerocash, Mixcoin等等。这些隐私保护方法可以用于保护区块链上用户的身份和交易的金额。隐私保护方案是双刃剑,一方面是对合法用户隐私的完善保护,另一方面如果完全脱离监管,则是对洗钱、勒索等违法犯罪行为的姑息和纵容。针对区块链上各种层出不穷的隐私保护方案,监管也要与时俱进。该文研究区块链用户身份的隐私保护和监管方法,提出了用户匿名和可追踪的技术,旨在推动区块链在实际中的应用。

English

    1. [1]

      NAKAMOTO S. Bitcoin: A peer-to-peer electronic cash system[EB/OL]. https://bitcoin.org/bitcoin.pdf, 2008.

    2. [2]

      曹素珍, 王斐, 郎晓丽, 等. 基于无证书的多方合同签署协议[J]. 电子与信息学报, 2019, 41(11): 2691–2698. doi: 10.11999/JEIT190166
      CAO Suzhen, WANG Fei, LANG Xiaoli, et al. Multi-party contract signing protocol based on certificateless[J]. Journal of Electronics and Information Technology, 2019, 41(11): 2691–2698. doi: 10.11999/JEIT190166

    3. [3]

      NARAYANAN A, BONNEAU J, FELTEN E, et al. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction[M]. Princeton University Press, 2016.

    4. [4]

      牛淑芬, 王金风, 王伯彬, 等. 区块链上基于B+树索引结构的密文排序搜索方案[J]. 电子与信息学报, 2019, 41(10): 2409–2415. doi: 10.11999/JEIT190038
      NIU Shufen, WANG Jinfeng, WANG Bobin, et al. Ciphertext sorting search scheme based on b+ tree index structure on blockchain[J]. Journal of Electronics and Information Technology, 2019, 41(10): 2409–2415. doi: 10.11999/JEIT190038

    5. [5]

      邹均, 张海宁, 唐屹, 等. 区块链技术指南[M]. 北京: 机械工业出版社, 2016: 97–99.
      ZOU Jun, ZHANG Haining, TANG Yi, et al. Guidelines for Blockchain Technology[M]. Beijing: China Machine Press, 2016: 97–99.

    6. [6]

      CHAUM D, FIAT A, and NAOR M. Untraceable electronic cash[M]. GOLDWASSER S. Advances in Cryptology — CRYPTO’ 88. New York: Springer, 1990: 319–327. doi: 10.1007/0-387-34799-2_25.

    7. [7]

      CHAUM D and VAN HEYST E. Group signatures[M]. DAVIES D W. Advances in Cryptology — EUROCRYPT ’91. Berlin: Springer, 1991: 257–265. doi: 10.1007/3-540-46416-6_22.

    8. [8]

      GROTH J and SAHAI A. Efficient non-interactive proof systems for bilinear groups[C]. The 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, 2008: 415–432. doi: 10.1007/978-3-540-78967-3_24.

    9. [9]

      CHAUM D L. Untraceable electronic mail, return addresses, and digital pseudonyms[J]. Communications of the ACM, 1981, 24(2): 84–90. doi: 10.1145/358549.358563

    10. [10]

      BONNEAU J, NARAYANAN A, MILLER A, et al. Mixcoin: Anonymity for bitcoin with accountable mixes[M]. CHRISTIN N and SAFAVI-NAINI R. Financial Cryptography and Data Security. Berlin: Springer, 2014: 486–504. doi: 10.1007/978-3-662-45472-5_31.

    11. [11]

      VALENTA L and ROWAN B. BLIndcoin: Blinded, accountable mixes for bitcoin[C]. 2015 International Conference on Financial Cryptography and Data Security, San Juan, 2015: 112–126. doi: 10.1007/978-3-662-48051-9_9.

    12. [12]

      MAXWELL G. Coinjoin: Bitcoin privacy for the real world[EB/OL]. Post on Bitcoin Forum. https://bitcointalk.org/index.php?topic=279249.0, 2013.

    13. [13]

      RUFFING T, MORENO-SANCHEZ P, and KATE A. CoinShuffle: Practical decentralized coin mixing for bitcoin[C]. The 19th European Symposium on Research in Computer Security, Wroclaw, 2014: 345–364. doi: 10.1007/978-3-319-11212-1_20.

    14. [14]

      RUFFING T, MORENO-SANCHEZ P, and KATE A. P2P mixing and unlinkable bitcoin transactions[C]. The 24th Annual Network and Distributed System Security Symposium, San Diego, 2017: 824.

    15. [15]

      RUFFING T and MORENO-SANCHEZ P. Valueshuffle: Mixing confidential transactions for comprehensive transaction privacy in bitcoin[C]. 2017 International Conference on Financial Cryptography and Data Security, Sliema, 2017: 133–154.

    16. [16]

      CHANDRAN N, GROTH J, and SAHAI A. Ring signatures of sub-linear size without random oracles[C]. The 34th International Colloquium on Automata, Languages, and Programming, Wrocław, 2007: 423–434.

    17. [17]

      BERGAN T, ANDERSON O, DEVIETTI J, et al. CryptoNote v 2.0[J]. https://cryptonote.org/whitepaper.pdf, 2013.

    18. [18]

      LIU J K, WEI V K, and WONG D S. Linkable spontaneous anonymous group signature for ad hoc groups[C]. The 9th Australasian Conference on Information Security and Privacy, Sydney, 2004: 325–335. doi: 10.1007/978-3-540-27800-9_28.

    19. [19]

      MIERS I, GARMAN C, GREEN M, et al. Zerocoin: Anonymous distributed e-cash from bitcoin[C]. 2013 IEEE Symposium on Security and Privacy, Berkeley, 2013: 397–411.

    20. [20]

      BEN SASSON E, CHIESA A, GARMAN C, et al. Zerocash: Decentralized anonymous payments from bitcoin[C]. 2014 IEEE Symposium on Security and Privacy, San Jose, 2014: 459–474.

    21. [21]

      BEN-SASSON E, CHIESA A, TROMER E, et al. Succinct non-interactive zero knowledge for a von Neumann architecture[C]. The 23rd USENIX conference on Security Symposium, 2014: 781–796.

    22. [22]

      PEDERSEN T P. Non-interactive and information-theoretic secure verifiable secret sharing[M]. FEIGENBAUM J. Annual International Cryptology— CRYPTO ’91. Berlin: Springer, 1991: 129–140. doi: 10.1007/3-540-46766-1_9.

    23. [23]

      FUJISAKI E and SUZUKI K. Traceable ring signature[C]. The 10th International Conference on Practice and Theory in Public-Key Cryptography, Beijing, China, 2007: 181–200. doi: 10.1007/978-3-540-71677-8_13.

    24. [24]

      GROTH J. Fully anonymous group signatures without random oracles[C]. The 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, 2007: 164–180. doi: 10.1007/978-3-540-76900-2_10.

    25. [25]

      ZHOU Sujing and LIN Dongdai. Shorter verifier-local revocation group signatures from bilinear maps[M]. POINTCHEVAL D, MU Yi, and CHEN Kefei. Cryptology and Network Security. Berlin: Springer, 2006: 126–143. doi: 10.1007/11935070_8.

    26. [26]

      BONEH D and BOYEN X. Short signatures without random oracles[M]. CACHIN C and CAMENISCH J L. Advances in Cryptology - EUROCRYPT 2004. Berlin: Springer, 2004: 56–73. doi: 10.1007/978-3-540-24676-3_4.

    1. [1]

      傅建庆, 陈健, 范容, 陈小平, 平玲娣. 基于代理签名的移动通信网络匿名漫游认证协议. 电子与信息学报,

    2. [2]

      牛淑芬, 王金风, 王伯彬, 贾向东, 杜小妮. 区块链上基于B+树索引结构的密文排序搜索方案. 电子与信息学报,

    3. [3]

      刘通, 唐伦, 何小强, 陈前斌. 融合区块链与雾计算系统中基于网络时延和资源管理的优化任务卸载方案. 电子与信息学报,

    4. [4]

      曹素珍, 王斐, 郎晓丽, 汪锐, 刘雪艳. 基于无证书的多方合同签署协议. 电子与信息学报,

    5. [5]

      田子建, 王继林, 伍云霞. 一个动态的可追踪匿名认证方案. 电子与信息学报,

    6. [6]

      鲍皖苏, 隗云, 钟普查. 原始签名人匿名的代理环签名研究. 电子与信息学报,

    7. [7]

      甄鸿鹄, 陈越, 郭渊博. 一种基于DAA的强匿名性门限签名方案. 电子与信息学报,

    8. [8]

      隗云, 熊国华, 鲍皖苏, 张兴凯. 辫群上新的签名体制. 电子与信息学报,

    9. [9]

      马春波, 敖珺, 何大可. 基于ID的群向签名方案. 电子与信息学报,

    10. [10]

      王晓明, 符方伟. 一种安全的群签名方案. 电子与信息学报,

    11. [11]

      钟军, 何大可. 一种新型的群签名方案. 电子与信息学报,

    12. [12]

      于宝证, 徐枞巍. 对一类群签名方案的伪造攻击. 电子与信息学报,

    13. [13]

      李艳俊, 武玉华, 李梦东, 杨刚. 对一种群签名方案的伪造攻击. 电子与信息学报,

    14. [14]

      谢琪. 一种高效群签名方案的密码学分析. 电子与信息学报,

    15. [15]

      王凤和, 胡予濮, 王春晓. 一个基于中国剩余定理的群签名方案的攻击及其改进方案. 电子与信息学报,

    16. [16]

      张彦华, 胡予濮, 刘西蒙, 张启坤, 贾惠文. 格上本地验证者撤销属性基群签名的零知识证明. 电子与信息学报,

    17. [17]

      王继林, 毛剑, 王育民. 一个无条件匿名的签密算法. 电子与信息学报,

    18. [18]

      李应, 陈秋菊. 基于优化的正交匹配追踪声音事件识别. 电子与信息学报,

    19. [19]

      邓承志, 汪胜前, 曹汉强. 基于多原子快速匹配追踪的图像编码算法. 电子与信息学报,

    20. [20]

      李雪莲, 王海玉, 高军涛, 李伟. 一种匿名可撤销的比特币混淆方案. 电子与信息学报,

  • 图 1  比特币中区块链的简易结构

    图 2  用户注册

  • 加载中
图(2)
计量
  • PDF下载量:  33
  • 文章访问数:  345
  • HTML全文浏览量:  92
文章相关
  • 通讯作者:  徐海霞, xuhaixia@iie.ac.cn
  • 收稿日期:  2019-10-22
  • 录用日期:  2020-01-20
  • 网络出版日期:  2020-02-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章