高级搜索

基于DNA链置换的三级联组合分子逻辑电路设计

孙军伟 李智 王延峰

引用本文: 孙军伟, 李智, 王延峰. 基于DNA链置换的三级联组合分子逻辑电路设计[J]. 电子与信息学报, doi: 10.11999/JEIT190847 shu
Citation:  Junwei SUN, Zhi LI, Yanfeng WANG. Design of Three-cascade Combinatorial Molecular Logic Circuit Based on DNA Strand Displacement[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190847 shu

基于DNA链置换的三级联组合分子逻辑电路设计

    作者简介: 孙军伟: 男,1984年生,副教授,研究方向为生物信息处理与控制;
    李智: 男,1994年生,研究生,研究方向为DNA计算,DNA链置换;
    王延峰: 男,1973年生,教授,研究方向为生物信息处理与控制
    通讯作者: 王延峰,yanfengwang@yeah.net
  • 基金项目: 国家重点研发项目(2017YFE0103900),国家自然科学基金 (U1804262, 61632002),中原千人计划(204200510003),食管癌防治国家重点实验室开放基金(K2020-0010, K2020-0011)

摘要: DNA计算研究内容繁多复杂,DNA复杂逻辑电路的搭建属于DNA计算的一个重要研究分支,其中逻辑门的构建属于DNA复杂逻辑电路搭建的基础研究,设计出更为简单的逻辑门可以为研究者搭建复杂电路提供参考,节省基础研究的宝贵时间。针对上述问题,该文利用使能控制端思想,采用DNA链置换技术,设计了与或、与非或非和异或同或3种DNA组合逻辑门。结果上显示,设计的3种组合逻辑门可实现六种逻辑运算功能,并利用所构建的组合逻辑门成功构造了多级联组合分子逻辑电路,为DNA计算提供了更多的解决方案,促进了DNA计算机的发展。

English

    1. [1]

      殷志祥, 唐震, 张强, 等. 基于DNA折纸基底的与非门计算模型[J]. 电子与信息学报, $ref.ref_year. doi: 10.11999/JEIT190825
      YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics &Information Technology, $ref.ref_year. doi: 10.11999/JEIT190825

    2. [2]

      梁静, 李红菊, 赵凤, 等. 一种构造GC常重量DNA码的方法[J]. 电子与信息学报, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070
      LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070

    3. [3]

      ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651

    4. [4]

      LAKIN M R, YOUSSEF S, POLO F, et al. Visual DSD: A design and analysis tool for DNA strand displacement systems[J]. Bioinformatics, 2011, 27(22): 3211–3213. doi: 10.1093/bioinformatics/btr543

    5. [5]

      ZHU Jinbo, ZHANG Libing, DONG Shaojun, et al. Four-way junction-driven DNA strand displacement and its application in building majority logic circuit[J]. ACS Nano, 2013, 7(11): 10211–10217. doi: 10.1021/nn4044854

    6. [6]

      KONG Jinglin, ZHU Jinbo, CHEN Kaikai, et al. Specific biosensing using DNA aptamers and nanopores[J]. Advanced Functional Materials, 2019, 29(3): 180755. doi: 10.1002/adfm.201807555

    7. [7]

      CUI Yunxi, FENG Xuenan, WANG Yaxin, et al. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity[J]. Chemical Science, 2019, 10(8): 2290–2297. doi: 10.1039/C8SC05102J

    8. [8]

      LI Hua, LIU Jin, and GU Hongzhou. Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3): 2248–2250. doi: 10.1111/jcmm.14127

    9. [9]

      TIKHOMIROV G, PETERSEN P, and QIAN Lulu. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns[J]. Nature, 2017, 552(7683): 67–71. doi: 10.1038/nature24655

    10. [10]

      KIELAR C, REDDAVIDE F V, TUBBENHAUER S, et al. Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery[J]. Angewandte Chemie, 2018, 130(45): 15089–15093. doi: 10.1002/ange.201806778

    11. [11]

      TASCIOTTI E. Smart cancer therapy with DNA origami[J]. Nature Biotechnology, 2018, 36(3): 234–235. doi: 10.1038/nbt.4095

    12. [12]

      CORDEIRO M, OTRELO-CARDOSO A R, SVERGUN D I, et al. Optical and structural characterization of a chronic myeloid leukemia DNA biosensor[J]. ACS Chemical Biology, 2018, 13(5): 1235–1242. doi: 10.1021/acschembio.8b00029

    13. [13]

      QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729

    14. [14]

      WUNSCH B H, KIM S C, GIFFORD S M, et al. Gel-on-a-chip: Continuous, velocity-dependent DNA separation using nanoscale lateral displacement[J]. Lab on a Chip, 2019, 19(9): 1567–1578. doi: 10.1039/C8LC01408F

    15. [15]

      CUI Yunxi, FENG Xuenan, WANG Yaxin, et al. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity[J]. Chemical Science, 2019, 10(8): 2290–2297.(本条文献与第7条文献信息重复, 请联系作者确认 doi: 10.1039/C8SC05102J

    16. [16]

      HE Jinglin, ZHANG Yang, YANG Chan, et al. Hybridization chain reaction based DNAzyme fluorescent sensor for L-histidine assay[J]. Analytical Methods, 2019, 11(16): 2204–2210. doi: 10.1039/C9AY00526A

    17. [17]

      LIU Na, XU Kai, LIU Liquan, et al. A star-shaped DNA probe based on strand displacement for universal and multiplexed fluorometric detection of genetic variations[J]. Microchimica Acta, 2018, 185(9): 413. doi: 10.1007/s00604-018-2941-0

    18. [18]

      ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Four-analog computation based on DNA strand displacement[J]. ACS Omega, 2017, 2(8): 4143–4160. doi: 10.1021/acsomega.7b00572

    19. [19]

      SUN Junwei, LI Xing, CUI Guangzhao, et al. One-bit half adder-half subtractor logical operation based on the DNA strand displacement[J]. Journal of Nanoelectronics and Optoelectronics, 2017, 12(4): 375–380. doi: 10.1166/jno.2017.2027

    20. [20]

      LI Wei, YANG Yang, YAN Hao, et al. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J]. Nano Letters, 2013, 13(6): 2980–2988. doi: 10.1021/nl4016107

    21. [21]

      张成, 马丽娜, 董亚非, 等. 自组装DNA链置换分子逻辑计算模型[J]. 科学通报, 2012, 57(31): 2909–2915. doi: 10.1360/csb2012-57-31-2909
      ZHANG Cheng, MA Li’na, DONG Yafei, et al. Molecular logic computing model based on DNA self-assembly strand branch migration[J]. Chinese Science Bulletin, 2012, 57(31): 2909–2915. doi: 10.1360/csb2012-57-31-2909

    1. [1]

      王君珂, 印珏, 牛人杰, 任少康, 晁洁. DNA计算与DNA纳米技术. 电子与信息学报,

    2. [2]

      殷志祥, 唐震, 张强, 崔建中, 杨静, 王日晟, 赵寿为, 张居丽. 基于DNA折纸基底的与非门计算模型. 电子与信息学报,

    3. [3]

      张凯, 陈彬, 许志伟. 基于多目标进化策略算法的DNA核酸编码设计. 电子与信息学报,

    4. [4]

      王雷, 林亚平. DNA计算在整数规划问题中的应用. 电子与信息学报,

    5. [5]

      殷志祥, 张凤月, 许进. 0-1规划问题的DNA计算. 电子与信息学报,

    6. [6]

      刘文斌, 朱翔鸥, 王向红, 张强, 马润年. 一种优化DNA计算模板性能的新方法. 电子与信息学报,

    7. [7]

      吴雪, 赵艺. 最大加权独立集问题的DNA算法. 电子与信息学报,

    8. [8]

      谭丽, 孙季丰, 郭礼华. 基于Memetic算法的DNA序列数据压缩方法. 电子与信息学报,

    9. [9]

      张顺, 高铁杠. 基于类DNA编码分组与替换的加密方案. 电子与信息学报,

    10. [10]

      梁静, 李红菊, 赵凤, 丁健. 一种构造GC常重量DNA码的方法. 电子与信息学报,

    11. [11]

      胡文晓, 钱梦瑶, 王越, 董亚非. 基于DNA适配体的荧光生物传感器. 电子与信息学报,

    12. [12]

      方振贤, 汪鹏君. 单沟道传输门绝热触发器和相对绝热计算原理. 电子与信息学报,

    13. [13]

      姜文彬. 三值T门组合网络化简的一种方法真值表分割法. 电子与信息学报,

    14. [14]

      冯涛, 张子彬, 马建峰. 协议组合逻辑安全的WiMAX无线网络认证协议. 电子与信息学报,

    15. [15]

      熊钢, 胡宇翔, 段通, 兰巨龙. 一种软件定义网络的安全服务链动态组合机制. 电子与信息学报,

    16. [16]

      边东明, 冉崇森, 仪新颖. OFDM系统上行链路的一种载波偏差估计算法. 电子与信息学报,

    17. [17]

      赵林靖, 李建东, 吕卓, 庞继勇. 基于ML和ESPRIT方法的OFDMA上行链路频偏估计算法. 电子与信息学报,

    18. [18]

      路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法. 电子与信息学报,

    19. [19]

      张卫明, 姚凯, 李世取. 蓝牙组合生成器相关系数的计算方法. 电子与信息学报,

    20. [20]

      李志扬, 刘武. STM中各种金属针尖/基底组合下的蒸发场强计算. 电子与信息学报,

  • 图 1  与或组合逻辑门

    图 2  与或组合逻辑门仿真图

    图 3  与非或非组合逻辑门

    图 4  与非或非组合逻辑门仿真图

    图 5  异或同或组合逻辑门

    图 6  异或同或组合逻辑门仿真图

    图 7  四输入三级联组合逻辑电路

    图 8  四输入三级联组合逻辑电路

    表 1  四输入三级联组合逻辑电路真值表

    序号C1/C2C3/C4C5/C6Y序号C1/C2C3/C4C5/C6Y
    1ON/OFFON/OFFON/OFF(ABC)'⊕D6OFF/ONOFF/ONON/OFF((A+B)+C)'⊕D
    2ON/OFFON/OFFOFF/ON(ABC)'⊙D7OFF/ONON/OFFOFF/ON((A+B)C)'⊙D
    3ON/OFFOFF/ONON/OFF((AB)+C)'⊕D8OFF/ONON/OFFON/OFF((A+B)C)'⊕D
    4ON/OFFOFF/ONOFF/ON((AB)+C)'⊙D9OFF/OFFOFF/OFFOFF/OFFOFF
    5OFF/ONOFF/ONOFF/ON((A+B)+C)'⊙D10ON/ONON/ONON/ONON
    下载: 导出CSV
  • 加载中
图(8)表(1)
计量
  • PDF下载量:  4
  • 文章访问数:  126
  • HTML全文浏览量:  45
文章相关
  • 通讯作者:  王延峰, yanfengwang@yeah.net
  • 收稿日期:  2019-11-01
  • 录用日期:  2020-04-18
  • 网络出版日期:  2020-05-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章