高级搜索

荷控忆阻器记忆衰退的寄生效应

沈怡然 李付鹏 王光义

引用本文: 沈怡然, 李付鹏, 王光义. 荷控忆阻器记忆衰退的寄生效应[J]. 电子与信息学报, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865 shu
Citation:  Yiran SHEN, Fupeng LI, Guangyi WANG. The Role of Parasitic Elements in Fading Memory of A Charge Controlled Memristor[J]. Journal of Electronics and Information Technology, 2020, 42(4): 844-850. doi: 10.11999/JEIT190865 shu

荷控忆阻器记忆衰退的寄生效应

    作者简介: 沈怡然: 男,1979年生,实验师,研究方向为非线性电路与系统;
    李付鹏: 男,1986年生,助理实验师,研究方向为非线性电路与系统;
    王光义: 男,1957年生,教授,研究方向为非线性电路与系统
    通讯作者: 李付鹏,lfp_99@hdu.edu.cn
  • 基金项目: 国家自然科学基金(61771176,61801154)

摘要: 荷控忆阻器在寄生元件存在的情况下,可能发生记忆衰退现象。该文采用忆阻器动力学路线图和仿真的方法,研究了忆阻器寄生电阻和寄生电容对其动力学特性的影响。理论和仿真分析发现,理想荷控(流控)忆阻器在直流和交流激励下,寄生电阻或寄生电容单独存在时不发生记忆衰退现象,但在寄生电阻和寄生电容同时存在的情况下会发生记忆衰退,其机理是寄生元件形成放电通路,从而导致荷控忆阻器产生了记忆衰退。

English

    1. [1]

      CHUA L O. Memristor—the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337

    2. [2]

      CHUA L O and KANG S M. Memristive devices and systems[J]. Proceedings of the IEEE, 1976, 64(2): 209–223. doi: 10.1109/PROC.1976.10092

    3. [3]

      STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932

    4. [4]

      TOUR J M and HE Tao. Electronics: The fourth element[J]. Nature, 2008, 453(7191): 42–43. doi: 10.1038/453042a

    5. [5]

      YANG J J, PICKETT M D, LI Xuema, et al. Memristive switching mechanism for metal/oxide/metal nanodevices[J]. Nature Nanotechnology, 2008, 3(7): 429–433. doi: 10.1038/nnano.2008.160

    6. [6]

      VONGEHR S and MENG Xiangkang. The missing memristor has not been found[J]. Scientific Reports, 2015, 5(1): 11657. doi: 10.1038/srep11657

    7. [7]

      ASCOLI A, TETZLAFF R, CHUA L O, et al. History erase effect in a non-volatile Memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(3): 389–400. doi: 10.1109/TCSI.2016.2525043

    8. [8]

      ASCOLI A, TETZLAFF R, CHUA L O, et al. Fading memory effects in a memristor for cellular nanoscale network applications[C]. The 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 421–425.

    9. [9]

      MENZEL S, WASER R, SIEMON A, et al. On the origin of the fading memory effect in ReRAMs[C]. The 27th IEEE 2017 International Symposium on Power and Timing Modeling, Optimization and Simulation, Thessaloniki, Greece, 2017: 1–5.

    10. [10]

      ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real Bistable Memristors—Part I: Theoretical insights on local fading memory[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1091–1095. doi: 10.1109/TCSII.2016.2604567

    11. [11]

      ASCOLI A, TETZLAFF R, and CHUA L O. The first ever real bistable memristors -- Part Ⅱ: Design and analysis of a local fading memory system[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2016, 63(12): 1096–1100. doi: 10.1109/TCSII.2016.2613560

    12. [12]

      ASCOLI A, TETZLAFF R, and MENZEL S. Exploring the dynamics of real-world Memristors on the basis of circuit theoretic model predictions[J]. IEEE Circuits and Systems Magazine, 2018, 18(2): 48–76. doi: 10.1109/MCAS.2018.2821760

    13. [13]

      CHUA L. Five non-volatile memristor enigmas solved[J]. Applied Physics A, 2018, 124(8): Artical No. 563. doi: 10.1007/s00339-018-1971-0

    14. [14]

      BOYD S and CHUA L. Fading memory and the problem of approximating nonlinear operators with Volterra series[J]. IEEE Transactions on Circuits and Systems, 1985, 32(11): 1150–1161. doi: 10.1109/TCS.1985.1085649

    15. [15]

      CHUA L. Everything you wish to know about memristors but are afraid to ask[J]. Radioengineering, 2015, 24(2): 319–368. doi: 10.13164/re.2015.0319

    16. [16]

      ASCOLI A, SLESAZECK S, MAHNE H, et al. Nonlinear dynamics of a locally-active memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(4): 1165–1174. doi: 10.1109/TCSI.2015.2413152

    17. [17]

      CHUA L O. 3 new theorems on memristors[C]. The 7th Workshop and MC Meeting Memristors-Devices, Models, Circuits, Systems and Applications, Dubrovnik, Croatia, 2018.

    18. [18]

      CORINTO F, ASCOLI A, and GILLI M. Analysis of current-voltage characteristics for memristive elements in pattern recognition systems[J]. International Journal of Circuit Theory and Applications, 2012, 40(12): 1277–1320. doi: 10.1002/cta.1804

  • 图 1  记忆衰退概念示意图

    图 2  理想荷控忆阻器DRM

    图 3  理想荷控忆阻器在不同初值条件下的DC响应

    图 4  理想荷控忆阻器在不同初值条件下的AC响应

    图 5  双音测试和三角波测试

    图 6  理想荷控忆阻器和寄生电阻

    图 7  考虑寄生电阻后的DRM

    图 8  理想荷控忆阻器和寄生电容

    图 9  寄生电容条件下忆阻系统的DC和AC响应

    图 10  考虑寄生电阻和寄生电容时的理想荷控忆阻器

    图 11  寄生电阻和电容同时存在时忆阻系统的DC和AC响应

  • 加载中
图(11)
计量
  • PDF下载量:  32
  • 文章访问数:  652
  • HTML全文浏览量:  424
文章相关
  • 通讯作者:  李付鹏, lfp_99@hdu.edu.cn
  • 收稿日期:  2019-11-01
  • 录用日期:  2019-12-26
  • 网络出版日期:  2020-01-06
  • 刊出日期:  2020-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章