高级搜索

基于氧化石墨烯与金属离子的逻辑模型设计与可控性验证

王璐慧 王越 钱梦瑶 董亚非

引用本文: 王璐慧, 王越, 钱梦瑶, 董亚非. 基于氧化石墨烯与金属离子的逻辑模型设计与可控性验证[J]. 电子与信息学报, doi: 10.11999/JEIT190872 shu
Citation:  Luhui WANG, Yue WANG, Mengyao QIAN, Yafei DONG. Logical Model Design and Controllability Verification Based on Graphene Oxide and Metal Ions[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT190872 shu

基于氧化石墨烯与金属离子的逻辑模型设计与可控性验证

    作者简介: 王璐慧: 女,1993年,博士生,研究方向为生物信息学、DNA计算、生物传感器;
    王越: 女,1994年,硕士生,研究方向为DNA计算、合成生物学;
    钱梦瑶: 女,1995年,硕士生,研究方向为DNA计算、生物传感器;
    董亚非: 男,1963年,教授,研究方向为生物信息学、DNA计算、生物传感器、合成生物学
    通讯作者: 董亚非,dongyf@snnu.edu.cn
  • 基金项目: 国家自然科学基金(61572302),陕西省自然科学基础研究计划(2020JM-298),陕西师范大学博士研究生自由探索项目(2019TS075)

摘要: 作为20世纪末诞生的新型学科,生物计算现已成为前沿科学研究的热点。与电子计算机相似,生物计算机的构建需要多种分子逻辑门,而将氧化石墨烯(GO)、重金属离子等具有生化特性的物质引入分子逻辑门的设计中,有望为研究提出新思路。此外,分子逻辑门最终应在生物实验层面上实现,这就需要对生物实验各个条件的可控性及可控范围进行研究。基于这样的想法,该文以氧化石墨烯和金属离子为基础设计了多个逻辑门,通过仿真实验、电泳实验、正交实验、荧光实验、等验证可行性的同时,对实验的可控性及可控范围有进一步研究,一方面证明了所设计逻辑门可行性,另一方面也发现其有运用于实际样品检测的能力。

English

    1. [1]

      赵湛, 卢飞, 王辰硕, 等. 基于阻抗检测微传感技术的皮肤渗透性评估方法[J]. 电子与信息学报, 2018, 40(8): 1927–1933. doi: 10.11999/JEIT171242
      ZHAO Zhan, LU Fei, WANG Chenshuo, et al. Evaluation of skin permeability based on impedance detection by microsensor technology[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1927–1933. doi: 10.11999/JEIT171242

    2. [2]

      陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究[J]. 电子与信息学报, 2019, 41(3): 530–536. doi: 10.11999/JEIT171191
      CHEN Wanzhong, WANG Xiaoxu, and ZHANG Tao. Research of discrimination between left and right hand motor imagery EEG patterns based on tunable Q-factor wavelet transform[J]. Journal of Electronics &Information Technology, 2019, 41(3): 530–536. doi: 10.11999/JEIT171191

    3. [3]

      万菲, 董晨, 杨静, 等. DNA计算技术的发展与应用[J]. 中国科学院院刊, 2014, 29(1): 94–105. doi: 10.3969/j.issn.1000-3045.2014.01.011
      WAN Fei, DONG Chen, YANG Jing, et al. Development and application of DNA computing technology[J]. Bulletin of the Chinese Academy of Sciences, 2014, 29(1): 94–105. doi: 10.3969/j.issn.1000-3045.2014.01.011

    4. [4]

      SHI Xiaolong, WANG Zhiyu, DENG Chenyan, et al. A novel bio-sensor based on DNA strand displacement[J]. PLoS One, 2014, 9(10): e108856. doi: 10.1371/journal.pone.0108856

    5. [5]

      许进. 生物计算机时代即将来临—探针机[C]. 2015年中国自动化大会摘要集, 武汉, 2015.
      XU Jing. The era of biological computer is coming -probe machine[C]. China Automation Society, Wuhan, 2015. (未找到本条文献英文信息, 请核对)

    6. [6]

      赵云彬, 周士华. DNA逻辑计算模型的研究现状与展望[J]. 计算机应用研究, 2019, 36(11): 3201–3209. doi: 10.19734/j.issn.1001-3695.2018.07.0512
      ZHAO Yunbin and ZHOU Shihua. Research status and prospect of DNA-based logic computing models[J]. Application Research of Computers, 2019, 36(11): 3201–3209. doi: 10.19734/j.issn.1001-3695.2018.07.0512

    7. [7]

      YU Sha, WANG Yingying, JIANG Liping, et al. Cascade amplification-mediated in situ hot-spot assembly for MicroRNA detection and molecular logic gate operations[J]. Analytical Chemistry, 2018, 90(7): 4544–4551. doi: 10.1021/acs.analchem.7b04930

    8. [8]

      LI Wei, ZHANG Fei, YAN Hao, et al. DNA based arithmetic function: A half adder based on DNA strand displacement[J]. Nanoscale, 2016, 8(6): 3775–3784. doi: 10.1039/C5NR08497K

    9. [9]

      FAN Daoqing, ZHU Jinbo, LIU Yaqing, et al. Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs[J]. Nanoscale, 2016, 8(6): 3834–3840. doi: 10.1039/C6NR00032K

    10. [10]

      YUAN Yanglei, CHEN Xin, CHEN Qing, et al. New switch on fluorescent probe with AIE characteristics for selective and reversible detection of mercury ion in aqueous solution[J]. Analytical Biochemistry, 2019, 585: 113403. doi: 10.1016/j.ab.2019.113403

    11. [11]

      ZHOU Chunyang, LIU Dali, WU Changtong, et al. Integration of DNA and graphene oxide for the construction of various advanced logic circuits[J]. Nanoscale, 2016, 8(40): 17524–17531. doi: 10.1039/C6NR01213B

    12. [12]

      WANG Lijun, TIAN Jianniao, HUANG Yan, et al. Homogenous fluorescence polarization assay for the DNA of HIV A T7 by exploiting exonuclease-assisted quadratic recycling amplification and the strong interaction between graphene oxide and ssDNA[J]. Microchimica Acta, 2016, 183(7): 2147–2153. doi: 10.1007/s00604-016-1844-1

    13. [13]

      WANG Kun, HE Mengqi, WANG Jin, et al. Implementation of arithmetic and nonarithmetic functions on a label-free and DNA-based platform[J]. Scientific Reports, 2016, 6(1): 34810. doi: 10.1038/srep34810

    14. [14]

      魏胤, 杨金玲, 张凯. 基于纳米石墨和单链脱氧核糖核酸混合物的荧光传感器对溶液中汞离子的检测[J]. 分析试验室, 2018, 37(1): 62–65. doi: 10.13595/j.cnki.issn1000-0720.2018.0013
      WEI yin, YANG Jinling, and ZHANG Kai. A nano-graphite - DNA hybrid sensor for magnified fluorescent detection of mercury(Ⅱ) ions in aqueous solution[J]. Chinese Journal of Analysis Laboratory, 2018, 37(1): 62–65. doi: 10.13595/j.cnki.issn1000-0720.2018.0013

    15. [15]

      MIYAKE Y, TOGASHI H, TASHIRO M, et al. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes[J]. Journal of the American Chemical Society, 2006, 128(7): 2172–2173. doi: 10.1021/ja056354d

    16. [16]

      ONO A, CAO Shiqi, TOGASHI H, et al. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J]. Chemical Communications, 2008(39): 4825–4827. doi: 10.1039/B808686A

    17. [17]

      CHEN Jielin, ZHANG Yingying, CHEN Mingpan, et al. Highly active G-quadruplex/hemin DNAzyme for sensitive colorimetric determination of lead(Ⅱ)[J]. Microchimica Acta, 2019, 186(12): 786. doi: 10.1007/s00604-019-3950-3

    18. [18]

      LI Hailong, GUO Shaojun, LIU Qinghui, et al. Implementation of arithmetic functions on a simple and universal molecular beacon platform[J]. Advanced Science, 2015, 2(5): 1500054. doi: 10.1002/advs.201500054

    19. [19]

      田涛. 基于荧光素衍生物在不同酸碱条件下结构转化的逻辑电路构建[D]. [硕士论文], 天津理工大学, 2014.
      TIAN Tao. Molecular logic circuits based on the structure conversions of fluorescein derivatives[D]. [Master dissertation], Tianjin University of Technology, 2014.

  • 图 1  YES门与AND门原理及真值表

    图 2  YES门及AND门仿真结果

    图 3  YES门PAGE电泳结果

    图 4  AND门琼脂糖电泳结果

    图 5  实验条件可控性验证及优化

    图 6  目标响应范围及线性相关性

    图 7  基于金属离子的多功能模型原理及真值表

    图 8  基于金属离子的多功能模型仿真结果

    图 9  实验条件可控性验证

    图 10  汞离子与银离子分别存在时目标响应范围及线性相关性

    图 11  基于氧化石墨烯与金属离子的三输入逻辑门原理、真值表及电泳结果

    表 1  DNA链序列

    链名称链序列(5’-3’)
    TargetGACATTCATCACGCTCAATCACTACTT
    H1TAMRA - AAGTAGTGATTGAGCGTGATGAATGTC
    HH1AAGTAGTGATTGAGCGTGATGAATGTCACTACTTCAACTCGCATTCATCACGCTCAATC
    HH2TAMRA - TGATGAATGCGAGTTGAAGTAGTGACATTCATCACGCTCAATCACTACTTCAACTCGCA
    下载: 导出CSV

    表 2  DNA链序列

    链名称链序列 ($5' $$3' $–)
    AFAM–GTACACTGTAAAAAAAAAAAAAAACACTGTG–BHQ
    下载: 导出CSV

    表 3  汞、银离子正交结果

    实验号A链浓度 (A)离子浓度 (B)反应时间(C)F0–F
    1A1B1C11239.41042.8
    2A1B2C31572.91806.4
    3A1B3C21535.12010.4
    4A2B1C33243.21090.8
    5A2B2C26569.54773.2
    6A2B3C17675.07103.0
    7A3B1C23723.71201.6
    8A3B2C18459.99090.4
    9A3B3C311151.310298.2
    下载: 导出CSV
  • 加载中
图(11)表(3)
计量
  • PDF下载量:  1
  • 文章访问数:  445
  • HTML全文浏览量:  36
文章相关
  • 通讯作者:  董亚非, dongyf@snnu.edu.cn
  • 收稿日期:  2019-11-04
  • 录用日期:  2020-04-16
  • 网络出版日期:  2020-05-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章