高级搜索

5G网络空间安全对抗博弈

徐瑨 吴慧慈 陶小峰

引用本文: 徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈[J]. 电子与信息学报, doi: 10.11999/JEIT200058 shu
Citation:  Jin XU, Huici WU, Xiaofeng TAO. 5G Cyberspace Security Game[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT200058 shu

5G网络空间安全对抗博弈

    作者简介: 徐瑨: 女,1981年生,副教授,研究方向为宽带移动通信、无线网络安全;
    吴慧慈: 女,1992年生,助理教授,研究方向为无线接入安全、异构融合协作;
    陶小峰: 男,1970年生,教授,博士生导师,研究方向为无线通信、移动通信安全
    通讯作者: 陶小峰,taoxf@bupt.edu.cn
  • 基金项目: 国家自然科学基金(61932005, 61901051),中央高校基础科研费专项资金(2019RC55)

摘要: 随着移动通信技术的快速发展和第五代移动通信(5G)网络的商用,网络空间安全问题日益凸显。该文针对5G网络空间安全中对抗博弈问题进行探讨,从静态博弈、动态博弈、基于演化和图论的博弈等基础模型,以及窃听与窃听对抗、干扰与干扰对抗等典型对抗种类方面,对当前国内外网络空间安全对抗博弈的研究进行分析和归纳,并进一步阐述5G网络空间安全对抗博弈研究中潜在的基础理论和对抗规律研究方向,分析5G环境下安全对抗博弈研究的必要性及面临的挑战,为5G网络空间安全攻防对抗研究提供新视角。

English

    1. [1]

      International Telecommunications Union. Framework and overall objectives of the future development of IMT for 2020 and beyond[R]. ITU-R, 2015.

    2. [2]

      CUI Qimei, SHI Yulong, TAO Xiaofeng, et al. A unified protocol stack solution for LTE and WLAN in future mobile converged networks[J]. IEEE Wireless Communications, 2014, 21(6): 24–33. doi: 10.1109/MWC.2014.7000968

    3. [3]

      WU Huici, TAO Xiaofeng, ZHANG Ning, et al. Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2045–2058. doi: 10.1109/JSAC.2018.2864418

    4. [4]

      LORENZ C, HOCK D, SCHERER J, et al. An SDN/NFV-enabled enterprise network architecture offering fine-grained security policy enforcement[J]. IEEE Communications Magazine, 2017, 55(3): 217–223. doi: 10.1109/MCOM.2017.1600414CM

    5. [5]

      ORDONEZ-LUCENA J, AMEIGEIRAS P, LOPEZ D, et al. Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges[J]. IEEE Communications Magazine, 2017, 55(5): 80–87. doi: 10.1109/MCOM.2017.1600935

    6. [6]

      许晓东, 张慧鑫, 戴巡, 等. 基于软件定义网络的下一代移动通信网络及业务分片策略和试验(英)[J]. 中国通信, 2014, 11(2): 65–77. doi: 10.1109/CC.2014.6821738
      XU Xiaodong, ZHANG Huixin, DAI Xun, et al. SDN based next generation mobile network with service slicing and trials[J]. China Communications, 2014, 11(2): 65–77.2): 65–77. (本条文献为英文文献, 请联系作者确认). doi: 10.1109/CC.2014.6821738

    7. [7]

      唐伦, 周钰, 杨友超, 等. 5G网络切片场景中基于预测的虚拟网络功能动态部署算法[J]. 电子与信息学报, 2019, 41(9): 2071–2078. doi: 10.11999/JEIT180894
      TANG Lun, ZHOU Yu, YANG Youchao, et al. Virtual network function dynamic deployment algorithm based on prediction for 5G network slicing[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2071–2078. doi: 10.11999/JEIT180894

    8. [8]

      RUPPRECHT D, DABROWSKI A, HOLZ T, et al. On security research towards future mobile network generations[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2518–2542. doi: 10.1109/COMST.2018.2820728

    9. [9]

      DUAN Xiaoyu and WANG Xianbin. Authentication handover and privacy protection in 5G HetNets using software-defined networking[J]. IEEE Communications Magazine, 2015, 53(4): 28–35. doi: 10.1109/MCOM.2015.7081072

    10. [10]

      LU Xiao, NIYATO D, JIANG Hai, et al. Cyber insurance for heterogeneous wireless networks[J]. IEEE Communications Magazine, 2018, 56(6): 21–27. doi: 10.1109/MCOM.2018.1700504

    11. [11]

      季新生, 徐水灵, 刘文彦, 等. 一种面向安全的虚拟网络功能动态异构调度方法[J]. 电子与信息学报, 2019, 41(10): 2435–2441. doi: 10.11999/JEIT181130
      JI Xinsheng, XU Shuiling, LIU Wenyan, et al. A security-oriented dynamic and heterogeneous scheduling method for virtual network function[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2435–2441. doi: 10.11999/JEIT181130

    12. [12]

      ITU WP 5D. Minimum requirements related to technical performance for IMT-2020 radio interface(s)[R]. ITU-R, 2017.

    13. [13]

      冯登国, 徐静, 兰晓. 5G移动通信网络安全研究[J]. 软件学报, 2018, 29(6): 1813–1825. doi: 10.13328/j.cnki.jos.005547
      FENG Dengguo, XU Jing, and LAN Xiao. Study on 5G mobile communication network security[J]. Journal of Software, 2018, 29(6): 1813–1825. doi: 10.13328/j.cnki.jos.005547

    14. [14]

      CAO Jin, MA Maode, LI Hui, et al. A survey on security aspects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170–195. doi: 10.1109/COMST.2019.2951818

    15. [15]

      KHAN R, KUMAR P, JAYAKODY D N K, et al. A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 196–248. doi: 10.1109/COMST.2019.2933899

    16. [16]

      PONNIAH J, HU Y C, and KUMAR P R. A system-theoretic clean slate approach to provably secure Ad-Hoc wireless networking[J]. IEEE Transactions on Control of Network Systems, 2016, 3(2): 206–217. doi: 10.1109/TCNS.2015.2428309

    17. [17]

      ALPCAN T and BASAR T. Network Security: A Decision and Game-theoretic Approach[M]. Cambridge: Cambridge University Press, 2010: 37–313.

    18. [18]

      杨义先, 钮心忻. 安全通论[M]. 北京: 电子工业出版社, 2018: 39–173.
      YANG Yixian and NIU Xinxin. General Theory of Information Security[M]. Beijing: Publishing House of Electronic Industry, 2018: 39–173.

    19. [19]

      DURKOTA K, LISÝ V, KIEKINTVELD C, et al. Case studies of network defense with attack graph games[J]. IEEE Intelligent Systems, 2016, 31(5): 24–30. doi: 10.1109/MIS.2016.74

    20. [20]

      SANJAB A and SAAD W. Data injection attacks on smart grids with multiple adversaries: A game-theoretic perspective[J]. IEEE Transactions on Smart Grid, 2016, 7(4): 2038–2049. doi: 10.1109/TSG.2016.2550218

    21. [21]

      WANG Kun, YUAN Li, MIYAZAKI T, et al. Jamming and eavesdropping defense in green cyber-physical transportation systems using a stackelberg game[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4232–4242. doi: 10.1109/TII.2018.2841033

    22. [22]

      AHMED I K and FAPOJUWO A O. Stackelberg equilibria of an anti-jamming game in cooperative cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(1): 121–134. doi: 10.1109/TCCN.2017.2769121

    23. [23]

      JIA Luliang, XU Yuhua, SUN Youming, et al. Stackelberg game approaches for anti-jamming defence in wireless networks[J]. IEEE Wireless Communications, 2018, 25(6): 120–128. doi: 10.1109/MWC.2017.1700363

    24. [24]

      LI Yuzhe, SHI Dawei, and CHEN Tongwen. False data injection attacks on networked control systems: A stackelberg game analysis[J]. IEEE Transactions on Automatic Control, 2018, 63(10): 3503–3509. doi: 10.1109/TAC.2018.2798817

    25. [25]

      HAN Yi, ALPCAN T, CHAN J, et al. A game theoretical approach to defend against co-resident attacks in cloud computing: Preventing co-residence using semi-supervised learning[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(3): 556–570. doi: 10.1109/TIFS.2015.2505680

    26. [26]

      LA Q D, QUEK T Q S, LEE J, et al. Deceptive attack and defense game in honeypot-enabled networks for the internet of things[J]. IEEE Internet of Things Journal, 2016, 3(6): 1025–2035. doi: 10.1109/JIOT.2016.2547994

    27. [27]

      WANG Chunlei, MIAO Qing, and DAI Yiqi. Network survivability analysis based on stochastic game model[C]. Proceedings of 2012 Fourth International Conference on Multimedia Information Networking and Security, Nanjing, 2014: 199–204. doi: 10.1109/MINES.2012.147.

    28. [28]

      WEI Longfei, SARWAT A F, SAAD W, et al. Stochastic games for power grid protection against coordinated cyber-physical attacks[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 684–694. doi: 10.1109/TSG.2016.2561266

    29. [29]

      王元卓, 林闯, 程学旗, 等. 基于随机博弈模型的网络攻防量化分析方法[J]. 计算机学报, 2010, 33(9): 1748–1762. doi: 10.3724/SP.J.1016.2010.01748
      WANG Yuanzhuo, LIN Chuang, CHENG Xueqi, et al. Analysis for network attack-defense based on stochastic game model[J]. Chinese Journal of Computers, 2010, 33(9): 1748–1762. doi: 10.3724/SP.J.1016.2010.01748

    30. [30]

      DORASZELSKI U and ESCOBAR J F. A theory of regular markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification[J]. Theoretical Economics, 2010, 5(2): 369–402. doi: 10.3982/TE632

    31. [31]

      XIAO Liang, XU Dongjin, XIE Caixia, et al. Cloud storage defense against advanced persistent threats: A prospect theoretic study[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(3): 534–544. doi: 10.1109/JSAC.2017.2659418

    32. [32]

      ZHANG Rui, ZHU Quanyan, and HAYEL Y. A Bi-level game approach to attack-aware cyber insurance of computer networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(3): 779–794. doi: 10.1109/JSAC.2017.2672378

    33. [33]

      MIN Minghui, XIAO Liang, XIE Caixia, et al. Defense against advanced persistent threats in dynamic cloud storage: A colonel blotto game approach[J]. IEEE Internet of Things Journal, 2018, 5(6): 4250–4261. doi: 10.1109/JIOT.2018.2844878

    34. [34]

      FUDENBERG D and TIROLE J. Game Theory[M]. Cambridge: Massachusetts Institute of Technology Press, 1991: 65–203.

    35. [35]

      LASZKA A, HORVATH G, FELEGYHAZI M, et al. FlipThem: Modeling targeted attacks with flipIt for multiple resources[M]. POOVENDRAN R and SAAD W. Decision and Game Theory for Security. Cham: Springer, 2014: 175–194. doi: 10.1007/978-3-319-12601-2_10.

    36. [36]

      WANG Chong, HOU Yunhe, and TEN C W. Determination of Nash equilibrium based on plausible attack-defense dynamics[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3670–3680. doi: 10.1109/TPWRS.2016.2635156

    37. [37]

      SHEN Shigen, LI Yuanjie, XU Hongyun, et al. Signaling game based strategy of intrusion detection in wireless sensor networks[J]. Computers & Mathematics with Applications, 2011, 62(6): 2404–2416. doi: 10.1016/j.camwa.2011.07.027

    38. [38]

      HUANG Shirui, ZHANG Hengwei, WANG Jindong, et al. Markov differential game for network defense decision-making method[J]. IEEE Access, 2018, 6: 39621–39634. doi: 10.1109/ACCESS.2018.2848242

    39. [39]

      ZHANG Hengwei, JIANG Lv, HUANG Shirui, et al. Attack-defense differential game model for network defense strategy selection[J], IEEE Access, 2018, 7: 50618–50629. doi: 10.1109/ACCESS.2018.2880214.

    40. [40]

      GARCIA E, CASBEER D W, and PACHTER M. Design and analysis of state-feedback optimal strategies for the differential game of active defense[J]. IEEE Transactions on Automatic Control, 2019, 64(2): 553–568. doi: 10.1109/TAC.2018.2828088

    41. [41]

      MALEKI H, VALIZADEH S, KOCH W, et al. Markov modeling of moving target defense games[C]. Proceedings of the 2016 ACM Workshop on Moving Target Defense, Vienna, Austria, 2016: 81–92. doi: 10.1145/2995272.2995273.

    42. [42]

      LEI Cheng, MA Duohe, and ZHANG Hongqi. Optimal strategy selection for moving target defense based on Markov game[J]. IEEE Access, 2017, 5: 156–169. doi: 10.1109/ACCESS.2016.2633983

    43. [43]

      SEDJELMACI S A H, BRAHMI I H, ANSARI N, et al. Cyber security framework for vehicular network based on a hierarchical game[J]. IEEE Transactions on Emerging Topics in Computing, 2019. doi: 10.1109/TETC.2018.2890476

    44. [44]

      BALKENBORG D and SCHLAG K H. On the interpretation of evolutionary stable sets in symmetric and asymmetric games[R]. Mimeo, Bonn University Economics Department, 1994. (查阅所有网上资料, 未找到本条文献信息, 请联系作者确认).

    45. [45]

      FIONDELLA L, RAHMAN A, LOWNES N, et al. Defense of high-speed rail with an evolutionary algorithm guided by game theory[J]. IEEE Transactions on Reliability, 2016, 65(2): 674–686. doi: 10.1109/TR.2015.2491602

    46. [46]

      ABASS A A A, XIAO Liang, MANDAYAM N B, et al. Evolutionary game theoretic analysis of advanced persistent threats against cloud storage[J]. IEEE Access, 2017, 5: 8482–8491. doi: 10.1109/ACCESS.2017.2691326

    47. [47]

      BHARATHI S, KUMAR D, and RAM D. Defence against responsive and non-responsive jamming attack in cognitive radio networks: An evolutionary game theoretical approach[J]. The Journal of Engineering, 2018, 2018(2): 68–75. doi: 10.1049/joe.2017.0285

    48. [48]

      HU Hao, LIU Yuling, ZHANG Hongqi, et al. Optimal network defense strategy selection based on incomplete information evolutionary game[J]. IEEE Access, 2018, 6: 29806–29821. doi: 10.1109/ACCESS.2018.2841885

    49. [49]

      HUANG Jianming, ZHANG Hengwei, and WANG Jindong. Markov evolutionary games for network defense strategy selection[J]. IEEE Access, 2017, 5: 19505–19516. doi: 10.1109/ACCESS.2017.2753278

    50. [50]

      MIEHLING E, RASOULI M, and TENEKETZIS D. Optimal defense policies for partially observable spreading processes on Bayesian attack graphs[C]. Proceedings of the 2nd ACM Workshop on Moving Target Defense, Colorado, USA, 2015: 67–76.

    51. [51]

      陈小军, 方滨兴, 谭庆丰, 等. 基于概率攻击图的内部攻击意图推断算法研究[J]. 计算机学报, 2014, 37(1): 62–72.
      CHEN Xiaojun, FANG Binxing, TAN Qingfeng, et al. Inferring attack intent of malicious insider based on probabilistic attack graph model[J]. Chinese Journal of Computers, 2014, 37(1): 62–72.

    52. [52]

      HAN Zhu, MARINA N, DEBBAH M, et al. Physical layer security game: How to date a girl with her boyfriend on the same table[C]. Proceedings of the First ICST International Conference on Game Theory for Networks, Istanbul, Turkey, 2009: 287–294. doi: 10.1109/GAMENETS.2009.5137412.

    53. [53]

      ZHANG Rongqing, SONG Lingyang, HAN Zhu, et al. Physical layer security for two-way untrusted relaying with friendly jammers[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3693–3704. doi: 10.1109/TVT.2012.2209692

    54. [54]

      CHU Zheng, CUMANAN K, DING Zhiguo, et al. Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 1833–1847. doi: 10.1109/TVT.2014.2336092

    55. [55]

      WU Huici, TAO Xiaofeng, HAN Zhu, et al. Secure transmission in MISOME wiretap channel with multiple assisting jammers: Maximum secrecy rate and optimal power allocation[J]. IEEE Transactions on Communications, 2017, 65(2): 775–789. doi: 10.1109/TCOMM.2016.2636288

    56. [56]

      FANG He, XU Li, and WANG Xianbin. Coordinated multiple-relays based physical-layer security improvement: A single-leader multiple-followers stackelberg game scheme[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(1): 197–209. doi: 10.1109/TIFS.2017.2746001

    57. [57]

      FANG He, XU Li, ZOU Yulong, et al. Three-stage stackelberg game for defending against full-duplex active eavesdropping attacks in cooperative communication[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10788–10799. doi: 10.1109/TVT.2018.2868900

    58. [58]

      WANG Wei, TEH K C, LI K H, et al. On the impact of adaptive eavesdroppers in multi-antenna cellular networks[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(2): 269–279. doi: 10.1109/TIFS.2017.2746010

    59. [59]

      LUO Yijie, FENG Zhibin, JIANG Han, et al. Game-theoretic learning approaches for secure D2D communications against full-duplex active eavesdropper[J]. IEEE Access, 2019, 7: 41324–41335. doi: 10.1109/ACCESS.2019.2906845

    60. [60]

      LI Meng, ZHANG Yanru, WANG Li, et al. Incentive design for collaborative jamming using contract theory in physical layer security[C]. Proceedings of 2016 IEEE/CIC International Conference on Communications in China, Chengdu, China, 2016: 1–6, doi: 10.1109/ICCChina.2016.7636873.

    61. [61]

      HAN Zhu, MARINA N, DEBBAH M, et al. Improved wireless secrecy rate using distributed auction theory[C]. Proceedings of the Fifth International Conference on Mobile Ad-hoc and Sensor Networks, Fujian, China, 2009: 442–447. doi: 10.1109/MSN.2009.73.

    62. [62]

      ZHANG Rongqing, SONG Lingyang, HAN Zhu, et al. Improve physical layer security in cooperative wireless network using distributed auction games[C]. Proceedings of 2011 IEEE Conference on Computer Communications Workshops, Shanghai, China, 2011: 18–23. doi: 10.1109/INFCOMW.2011.5928805.

    63. [63]

      KHAN A S, RAHULAMATHAVAN Y, BASUTLI B, et al. Blockchain-based distributive auction for relay-assisted secure communications[J]. IEEE Access, 2019, 7: 95555–95568. doi: 10.1109/ACCESS.2019.2929136

    64. [64]

      SAAD W, HAN Zhu, BASAR T, et al. Physical layer security: Coalitional games for distributed cooperation[C]. Proceedings of the 2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Seoul, South Korea, 2009: 1–8.

    65. [65]

      WANG Kun, YUAN Li, MIYAZAKI T, et al. Strategic antieavesdropping game for physical layer security in wireless cooperative networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9448–9457. doi: 10.1109/TVT.2017.2703305

    66. [66]

      WANG Kun, YUAN Li, MIYAZAKI T, et al. Antieavesdropping with selfish jamming in wireless networks: A Bertrand game approach[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 6268–6279. doi: 10.1109/TVT.2016.2639827

    67. [67]

      YUKSEL M, LIU Xi, and ERKIP E. A secure communication game with a relay helping the eavesdropper[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 818–830. doi: 10.1109/TIFS.2011.2125956

    68. [68]

      ALSABA Y, LEOW C Y, and ABDUL RAHIM S K. A zero-sum game approach for non-orthogonal multiple access systems: Legitimate eavesdropper case[J]. IEEE Access, 2018, 6: 58764–58773. doi: 10.1109/ACCESS.2018.2874215

    69. [69]

      JIA Luliang, XU Yuhua, SUN Youming, et al. Stackelberg game approaches for anti-jamming defence in wireless networks[J]. IEEE Wireless Communications, 2018, 25(6): 120–128.6): 120–128. (本条文献与第23条文献信息重复,请联系作者确认). doi: 10.1109/MWC.2017.1700363

    70. [70]

      AHMED I K and FAPOJUWO A O. Stackelberg equilibria of an anti-jamming game in cooperative cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(1): 121–134.1): 121–134. (本条文献与第22条文献信息重复,请联系作者确认). doi: 10.1109/TCCN.2017.2769121

    71. [71]

      SAGDUYU Y E, BERRY R, and EPHREMIDES A. MAC games for distributed wireless network security with incomplete information of selfish and malicious user types[C]. Proceedings of the 2009 International Conference on Game Theory for Networks, Istanbul, Turkey, 2009: 130–139. doi: 10.1109/GAMENETS.2009.5137394.

    72. [72]

      TANG Ling, CHEN Hao, and LI Qianmu. Social tie based cooperative jamming for physical layer security[J]. IEEE Communications Letters, 2015, 19(10): 1790–1793. doi: 10.1109/LCOMM.2015.2462826

    73. [73]

      LV Shichao, XIAO Liang, HU Qing, et al. Anti-jamming power control game in unmanned aerial vehicle networks[C]. Proceedings of 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253988.

    74. [74]

      LU Xiaozhen, XU Dongjin, XIAO Liang, et al. Anti-jamming communication game for UAV-aided VANETs[C]. Proceedings of 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253987.

    1. [1]

      张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移. 电子与信息学报,

    2. [2]

      雷大江, 张策, 李智星, 吴渝. 基于多流融合生成对抗网络的遥感图像融合方法. 电子与信息学报,

    3. [3]

      夏晓峰, 向宏, 肖震宇, 蔡挺. 基于国产密码算法的数控网络的双层安全防护模型研究及安全评估. 电子与信息学报,

    4. [4]

      张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略. 电子与信息学报,

    5. [5]

      黄静琪, 胡琛, 孙山鹏, 高翔, 何兵. 一种基于异步传感器网络的空间目标分布式跟踪方法. 电子与信息学报,

    6. [6]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报,

    7. [7]

      张波, 黄开枝, 林胜斌, 易鸣, 陈亚军. MIMO异构网络中一种基于人工噪声的抗主动窃听者的鲁棒安全传输方案. 电子与信息学报,

    8. [8]

      李骜, 刘鑫, 陈德运, 张英涛, 孙广路. 基于低秩表示的鲁棒判别特征子空间学习模型. 电子与信息学报,

    9. [9]

      谢永, 李香, 张松松, 吴黎兵. 一种可证安全的车联网无证书聚合签名改进方案. 电子与信息学报,

    10. [10]

      陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法. 电子与信息学报,

    11. [11]

      张天骐, 胡延平, 冯嘉欣, 张晓艳. 基于零空间矩阵匹配的极化码参数盲识别算法. 电子与信息学报,

    12. [12]

      夏士超, 姚枝秀, 鲜永菊, 李云. 移动边缘计算中分布式异构任务卸载算法. 电子与信息学报,

    13. [13]

      贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析. 电子与信息学报,

    14. [14]

      贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析. 电子与信息学报,

    15. [15]

      吕敬祥, 罗文浪. 无线传感网络量化及能量优化策略. 电子与信息学报,

    16. [16]

      唐伦, 魏延南, 谭颀, 唐睿, 陈前斌. H-CRAN网络下联合拥塞控制和资源分配的网络切片动态资源调度策略. 电子与信息学报,

    17. [17]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报,

    18. [18]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报,

    19. [19]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报,

    20. [20]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报,

  • 图 1  5G网络架构及新增典型安全需求

    图 2  多天线系统窃听与协作窃听对抗以及干扰与干扰对抗

    表 1  典型的网络空间安全对抗博弈模型

    博弈类型博弈模型参考文献
    基于静态博弈的安全对抗斯塔伯克博弈[19-25]
    贝叶斯博弈[26]
    随机博弈[27-30]
    混合策略博弈[31]
    零和博弈[32,33]
    完全/不完全信息博弈[20,26,30]
    基于动态博弈的安全对抗完全/不完全信息博弈[35,36]
    微分博弈[38-40]
    信号传递博弈[37]
    基于马尔可夫判决[41,42]
    递阶对策[43]
    基于演化博弈的安全对抗对称/非对称博弈[44,45]
    完全/不完全信息演化博弈[48]
    马尔可夫演化博弈[49]
    结合图论的博弈对抗贝叶斯攻击图[50]
    概率攻击图[51]
    下载: 导出CSV

    表 2  5G无线接入网中的典型安全对抗博弈

    对抗种类应用模型参考文献
    窃听与窃听对抗斯塔伯克博弈[52-59]
    契约理论[60]
    拍卖模型[61-63]
    联盟博弈[64]
    Bertrand博弈[65,66]
    零和博弈[67,68]
    干扰与干扰对抗斯塔伯克博弈[69,70]
    贝叶斯博弈[71]
    协作干扰攻击间的博弈[72]
    基于学习的干扰对抗[73,74]
    下载: 导出CSV
  • 加载中
图(2)表(2)
计量
  • PDF下载量:  19
  • 文章访问数:  227
  • HTML全文浏览量:  120
文章相关
  • 通讯作者:  陶小峰, taoxf@bupt.edu.cn
  • 收稿日期:  2020-01-15
  • 网络出版日期:  2020-06-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章