高级搜索

基于个性化网络标志物的药物推荐方法研究

刘文斌 吴倩 杜玉改 方刚 石晓龙 许鹏

引用本文: 刘文斌, 吴倩, 杜玉改, 方刚, 石晓龙, 许鹏. 基于个性化网络标志物的药物推荐方法研究[J]. 电子与信息学报, 2020, 42(6): 1340-1347. doi: 10.11999/JEIT190837 shu
Citation:  Wenbin LIU, Qian WU, Yugai DU, Gang FANG, Xiaolong SHI, Peng XU. Drug Recommendation Based on Individual Specific Biomarkers[J]. Journal of Electronics and Information Technology, 2020, 42(6): 1340-1347. doi: 10.11999/JEIT190837 shu

基于个性化网络标志物的药物推荐方法研究

    作者简介: 刘文斌: 男,1969年生,教授,研究方向为生物信息学;
    吴倩: 女,1994年生,硕士,研究方向为生物信息学;
    杜玉改: 女,1993年生,硕士,研究方向为生物信息学;
    方刚: 男,1969年生,教授,研究方向为生物信息学;
    石晓龙: 男,1975年生,教授,研究方向为生物信息学;
    许鹏: 男,1986年生,博士后,研究方向为生物信息学
    通讯作者: 许鹏,gdxupeng@gzhu.edu.cn
  • 基金项目: 国家重点研发计划(2019YFA0706402),国家自然科学基金(61572367, 61573017, 61972107, 61972109)

摘要: 基于个性化标志物的药物推荐研究,有助于实现个性化用药及推动精准医疗的发展。该文利用基因表达谱数据及蛋白质网络信息,基于基因2维高斯分布方法筛选出个性化网络标志物。进而综合考虑靶基因的重要性和药物的副作用,提出了一种计算药物对个性化标志物影响权重的方法。将该方法应用于肺腺癌、肾透明细胞癌和子宫内膜癌数据集,通过启发式搜索方法,得到每个疾病样本重要药物推荐列表。结果表明,推荐的药物列表在同种癌症不同样本中既存在一致性,也表现出很大的差异性,如药物种类及药物排序差异,这说明个性化药物在疾病治疗中的重要性及必要性。通过从药物数据库中搜索药物组合对疾病治疗的影响作用表明,该文方法筛选得到的许多药物组合对具体疾病治疗具有积极影响,这进一步证明该文基于个性化网络标志物的药物推荐方法的准确性。该文的研究将有效促进精准化医疗的发展。

English

    1. [1]

      SIEGEL R L, MILLER K D, and JEMAL A. Cancer statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(1): 7–30. doi: 10.3322/caac.21332

    2. [2]

      TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2015, 65(2): 87–108. doi: 10.3322/caac.21262

    3. [3]

      WANG Hongwei, SUN Qiang, ZHAO Wenyuan, et al. Individual-level analysis of differential expression of genes and pathways for personalized medicine[J]. Bioinformatics, 2015, 31(1): 62–68. doi: 10.1093/bioinformatics/btu522

    4. [4]

      LIU Xiaoping, WANG Yuetong, JI Hongbin, et al. Personalized characterization of diseases using sample-specific networks[J]. Nucleic Acids Research, 2016, 44(22): e164. doi: 10.1093/nar/gkw772

    5. [5]

      ZHANG Wanwei, ZENG Tao, and CHEN Luonan. EdgeMarker: Identifying differentially correlated molecule pairs as edge-biomarkers[J]. Journal of Theoretical Biology, 2014, 362: 35–43. doi: 10.1016/j.jtbi.2014.05.041

    6. [6]

      YU Xiangtian, ZHANG Jingsong, SUN Shaoyan, et al. Individual-specific edge-network analysis for disease prediction[J]. Nucleic Acids Research, 2017, 45(20): e170. doi: 10.1093/nar/gkx787

    7. [7]

      PERLMAN L, GOTTLIEB A, ATIAS N, et al. Combining drug and gene similarity measures for drug-target elucidation[J]. Journal of Computational Biology, 2011, 18(2): 133–145. doi: 10.1089/cmb.2010.0213

    8. [8]

      WANG Wenhui, YANG Sen, and LI Jing. Drug Target Predictions Based on Heterogeneous Graph Inference[M]. ALTMAN R B, DUNKER A K, HUNTER L, et al. Biocomputing 2013. Hawaii, USA: World Scientific, 2013: 53-64 doi: 10.1142/9789814447973_0006.

    9. [9]

      ZONG Nansu, KIM H, NGO V, et al. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations[J]. Bioinformatics, 2017, 33(15): 2337–2344. doi: 10.1093/bioinformatics/btx160

    10. [10]

      SU Junjie, YOON B J, and DOUGHERTY E R. Accurate and reliable cancer classification based on probabilistic inference of pathway activity[J]. PLoS One, 2009, 4(12): e8161. doi: 10.1371/journal.pone.0008161

    11. [11]

      TOMCZAK K, CZERWIŃSKA P, and WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge[J]. Contemporary Oncology (Poznan, Poland) , 2015, 19(1A): A68–A77. doi: 10.5114/wo.2014.47136

    12. [12]

      SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Research, 2017, 45(D1): D362–D368. doi: 10.1093/nar/gkw937

    13. [13]

      WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2018, 46(D1): D1074–D1082. doi: 10.1093/nar/gkx1037

    14. [14]

      GRIFFITH M, GRIFFITH O L, COFFMAN A C, et al. DGIdb: Mining the druggable genome[J]. Nature Methods, 2013, 10(12): 1209–1210. doi: 10.1038/nmeth.2689

    15. [15]

      李玉博, 陈邈. 几乎完备高斯整数序列构造法[J]. 电子与信息学报, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844
      LI Yubo and CHEN Miao. Construction of nearly perfect gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844

    16. [16]

      陈曦, 张坤. 一种基于树增强朴素贝叶斯的分类器学习方法[J]. 电子与信息学报, 2019, 41(8): 2001–2008. doi: 10.11999/JEIT180886
      CHEN Xi and ZHANG Kun. A classifier learning method based on tree-augmented naïve bayes[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2001–2008. doi: 10.11999/JEIT180886

    17. [17]

      FANUCCHI M P, FOSSELLA F V, BELT R, et al. Randomized phase ii study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2006, 24(31): 5025–5033. doi: 10.1200/JCO.2006.06.1853

    18. [18]

      DAVIES A M, RUEL C, LARA P N, et al. The proteasome inhibitor bortezomib in combination with gemcitabine and carboplatin in advanced non-small cell lung cancer: A california cancer consortium phase I study[J]. Journal of Thoracic Oncology, 2008, 3(1): 68–74. doi: 10.1097/JTO.0b013e31815e8b88

    19. [19]

      DAVIES A M, CHANSKY K, LARA Jr P N, et al. Bortezomib plus gemcitabine/carboplatin as first-line treatment of advanced non-small cell lung cancer: A phase II southwest oncology group study (S0339)[J]. Journal of Thoracic Oncology, 2009, 4(1): 87–92. doi: 10.1097/JTO.0b013e3181915052

    20. [20]

      KELLY K, CROWLEY J, BUNN PA, et al. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: A southwest oncology group trial[J]. Journal of Clinical Oncology, 2001, 19(13): 3210–3218. doi: 10.1200/JCO.2001.19.13.3210

    21. [21]

      SANDLER A, GRAY R, PERRY M C, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer[J]. New England Journal of Medicine, 2006, 355(24): 2542–2550. doi: 10.1056/NEJMoa061884

    22. [22]

      MCNAMARA M, SWEENEY C, ANTONARAKIS E S, et al. The evolving landscape of metastatic hormone-sensitive prostate cancer: A critical review of the evidence for adding docetaxel or abiraterone to androgen deprivation[J]. Prostate Cancer and Prostatic Diseases, 2018, 21(3): 306–318. doi: 10.1038/s41391-017-0014-9

    23. [23]

      ROBINET G, BARLESI F, FOURNEL P, et al. Second-line therapy with gefitinib in combination with docetaxel for advanced non-small cell lung cancer: A phase II randomized study[J]. Targeted Oncology, 2007, 2(2): 63–71. doi: 10.1007/s11523-007-0042-9

    24. [24]

      ANGELOPOULOU A, KOLOKITHAS-NTOUKAS A, FYTAS C, et al. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor[J]. ACS Omega, 2019, 4(26): 22214–22227. doi: 10.1021/acsomega.9b03594

    25. [25]

      TEDESCO-SILVA H, PASCUAL J, VIKLICKY O, et al. Safety of everolimus with reduced calcineurin inhibitor exposure in de novo kidney transplants: An analysis from the randomized TRANSFORM study[J]. Transplantation, 2019, 103(9): 1953–1963. doi: 10.1097/TP.0000000000002626

    1. [1]

      许鹏, 王兵, 方刚, 石晓龙, 刘文斌. 基于可变剪接紊乱的乳腺癌亚型预测分析. 电子与信息学报, 2020, 42(6): 1348-1354.

    2. [2]

      方维维, 刘梦然, 王云鹏, 李阳阳, 安竹林. 面向物联网隐私数据分析的分布式弹性网络回归学习算法. 电子与信息学报, 2020, 42(0): 1-9.

    3. [3]

      刘文斌, 陈杰, 方刚, 石晓龙, 许鹏. 基于药物互作网络的协同与拮抗预测研究. 电子与信息学报, 2020, 42(6): 1420-1427.

    4. [4]

      张普宁, 亢旭源, 刘宇哲, 李学芳, 吴大鹏, 王汝言. 相似度自适应估计的物联网实体高效搜索方法. 电子与信息学报, 2020, 42(7): 1702-1709.

    5. [5]

      席博, 洪涛, 张更新. 卫星物联网场景下基于节点选择的协作波束成形技术研究. 电子与信息学报, 2020, 42(0): 1-9.

    6. [6]

      张晓寒, 张源, 池信坚, 杨珉. 基于指令虚拟化的安卓本地代码加固方法. 电子与信息学报, 2020, 42(0): 1-9.

    7. [7]

      臧艺超, 周天阳, 朱俊虎, 王清贤. 领域独立智能规划技术及其面向自动化渗透测试的攻击路径发现研究进展. 电子与信息学报, 2020, 41(0): 1-13.

    8. [8]

      吕敬祥, 罗文浪. 无线传感网络量化及能量优化策略. 电子与信息学报, 2020, 42(5): 1118-1124.

    9. [9]

      刘凤增, 肖兵, 陈施思, 陈嘉勋. 负载作用下相依网络择优恢复方法研究. 电子与信息学报, 2020, 42(7): 1694-1701.

    10. [10]

      徐瑨, 吴慧慈, 陶小峰. 5G网络空间安全对抗博弈. 电子与信息学报, 2020, 41(0): 1-11.

    11. [11]

      唐伦, 魏延南, 谭颀, 唐睿, 陈前斌. H-CRAN网络下联合拥塞控制和资源分配的网络切片动态资源调度策略. 电子与信息学报, 2020, 42(5): 1244-1252.

    12. [12]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    13. [13]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    14. [14]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报, 2020, 42(0): 1-8.

    15. [15]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报, 2020, 42(5): 1102-1109.

    16. [16]

      杨书新, 梁文, 朱凯丽. 基于三级邻居的复杂网络节点影响力度量方法. 电子与信息学报, 2020, 42(5): 1140-1148.

    17. [17]

      张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移. 电子与信息学报, 2020, 42(5): 1216-1222.

    18. [18]

      赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌. 面向可靠性的5G网络切片重构及映射算法. 电子与信息学报, 2020, 42(6): 1478-1485.

    19. [19]

      王威丽, 陈前斌, 唐伦. 虚拟网络切片中的在线异常检测算法研究. 电子与信息学报, 2020, 42(6): 1460-1467.

    20. [20]

      吴奇, 陈鸿昶. 软件定义网络容错控制平面的最小覆盖布局方法. 电子与信息学报, 2020, 42(0): 1-8.

  • 图 1  癌症个性化网络标志物获取流程

    图 2  3种癌症中药物靶基因数量与药物副作用数量之间的散点图

    图 3  3种癌症中考虑药物副作用和不考虑药物副作用时药物的排名

    图 4  3类癌症得到的候选药物集合在各个样本中的具体分布

    图 5  DrugBank数据库中具有协同作用的药物对在各个样本中的分布情况

    表 1  3种癌症数据集统计信息

    癌症类型样本数量(正常/癌症)
    LUAD609(95/514)
    KIRC602(72/530)
    UCEC578(35/543)
    下载: 导出CSV

    表 2  启发式搜索的迭代过程

     个性化药物推荐算法
     输入:物集合$D = \{ d_1,d_2, ··· ,{d_n}\} $;
        个性化标志物集合$T = \{ t_1,t_2, ··· ,t_m\} $;
     输出:个性化药物推荐列表 (Personalized Drug, PD);
     (1) Initialization: Set $k = 1$;
     (2) DO
     (3) for $i = 1,2, ··· ,n$
     (4) Compute $S\left( {{d_i}} \right)$;
     (5) EndFor
     (6) If S(di) is the maximum among all drugs in $D$ then
     (7) ${\rm{PD}}\left( k \right) = {d_i}$;
     (8) $k = k + 1$;
     (9) EndIf
     (10) Update $D$: Delete di from $D$;
     (11) Update $T$: Delete all targets of ${d_i}$ from $T$;
     (12) WHILE Max(targets number of each drug in $D$)>=6
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  37
  • 文章访问数:  872
  • HTML全文浏览量:  315
文章相关
  • 通讯作者:  许鹏, gdxupeng@gzhu.edu.cn
  • 收稿日期:  2019-10-29
  • 录用日期:  2020-01-20
  • 网络出版日期:  2020-02-27
  • 刊出日期:  2020-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章