高级搜索

利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究

孙子文 叶乔

引用本文: 孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究[J]. 电子与信息学报, doi: 10.11999/JEIT191013 shu
Citation:  Ziwen SUN, Qiao YE. Study on the Physical Unclonable Function of the Reliable Information Entropy Extracted by the Frequency Characteristic of Oscillating Ring[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT191013 shu

利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究

    作者简介: 孙子文: 女,1968年生,博士,教授,研究方向为模式识别、人工智能、无线传感网络理论与技术、信息安全;
    叶乔: 男,1995年生,硕士生,研究方向为物理不可克隆函数及无线射频识别技术等
    通讯作者: 孙子文,sunziwen@jiangnan.edu.cn
  • 基金项目: 国家自然科学基金(61373126),江苏省自然科学基金(BK20131107),中央高校基本科研业务费用专项资金(JUSRP51310A)

摘要: 针对传统物理不可克隆函数(PUF)产生信息熵少、易受环境因素干扰等问题,该文设计一种产生多位稳定信息熵的PUF方案。该方案通过对FPGA上环形震荡器所产生频率数据的分析,从每个震荡环中提取能够代表震荡环特性的特征位作为信息熵。通过对逆变器温度特性的研究,利用电流饥饿逆变器和常规逆变器组成新的震荡环来降低温度对产生的信息熵的可靠性的影响。通过Cadence IC仿真和进行赛灵思zynq 7000系列FPGA开发平台上的实验,结果表明改进的PUF结构使用相同数量的震荡环产生更多的信息熵,并且其可靠性、唯一性均得到提升。

English

    1. [1]

      SAHOO S R, KUMAR K S, and MAHAPATRA K. A novel current controlled configurable RO PUF with improved security metrics[J]. Integration, 2017, 58: 401–410. doi: 10.1016/j.vlsi.2016.11.005

    2. [2]

      SANKARAN S, SHIVSHANKAR S, and NIMMY K, et al. LHPUF: Lightweight hybrid PUF for enhanced security in internet of things[C]. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Hyderabad, India, 2018: 175–178. doi: 10.1109/iSES.2018.00066.

    3. [3]

      GASSEND B, CLARKE D, and VAN DIJK M, et al. Silicon physical random functions[C]. The 9th ACM Conference on Computer and Communications Security, Washington, USA, 2002. doi: 10.1145/586110.586132.

    4. [4]

      张跃军, 王佳伟, 潘钊, 等. 基于正交混淆的多硬件IP核安全防护设计[J]. 电子与信息学报, 2019, 41(8): 1847–1854. doi: 10.11999/JEIT180898
      ZHANG Yuejun, WANG Jiawei, PAN Zhao, et al. Hardware security for multi IPs protection based on orthogonal obfuscation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1847–1854. doi: 10.11999/JEIT180898

    5. [5]

      GAO Yansong, SU Yang, YANG Wei, et al. Building secure SRAM PUF key generators on resource constrained devices[C]. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 2019: 912–917. doi: 10.1109/PERCOMW.2019.8730781.

    6. [6]

      KUMAR A, MISHRA R S, and KASHWAN K R. Challenge-response generation using RO-PUF with reduced hardware[C]. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 2016: 1305–1308. doi: 10.1109/ICACCI.2016.7732227.

    7. [7]

      SU Ying, HOLLEMAN J, and OTIS B P, et al. A digital 1.6 pJ/bit chip identification circuit using process variations[J]. IEEE Journal of Solid-State Circuits, 2008, 43(1): 69–77. doi: 10.1109/JSSC.2007.910961

    8. [8]

      KUMAR S S, GUAJARDO J, and MAES R, et al. Extended abstract: The butterfly PUF protecting IP on every FPGA[C]. 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, USA, 2008: 67–70. doi: 10.1109/HST.2008.4559053.

    9. [9]

      LEE J W, LIM D, GASSEND B, et al. A technique to build a secret key in integrated circuits for identification and authentication applications[C]. 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525), Honolulu, USA, 2004: 176–179. doi: 10.1109/VLSIC.2004.1346548.

    10. [10]

      LIM D, LEE J W, and GASSEND B, et al. Extracting secret keys from integrated circuits[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2005, 13(10): 1200–1205. doi: 10.1109/TVLSI.2005.859470

    11. [11]

      SUH G E and DEVADAS S. Physical unclonable functions for device authentication and secret key generation[C]. The 44th ACM/IEEE Design Automation Conference, San Diego, USA, 2007: 9–14.

    12. [12]

      MAITI A and SCHAUMONT P. Improved ring oscillator PUF: An FPGA-friendly secure primitive[J]. Journal of Cryptology, 2011, 24(2): 375–397. doi: 10.1007/s00145-010-9088-4

    13. [13]

      CHEN B and WILLEMS F M J. Secret key generation over biased physical unclonable functions with polar codes[J]. IEEE Internet of Things Journal, 2019, 6(1): 435–445. doi: 10.1109/JIOT.2018.2864594

    14. [14]

      SUZUKI D and SHIMIZU K. The glitch PUF: A new Delay-PUF architecture exploiting glitch shapes[C]. The 12th International Workshop Cryptographic Hardware and Embedded Systems, Santa Barbara, USA, 2010: 366–382. doi: 10.1007/978-3-642-15031-9_25.

    15. [15]

      USMANI M A, KESHAVARZ S, MATTHEWS E, et al. Efficient PUF-Based key generation in FPGAs using per-device configuration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(2): 364–375. doi: 10.1109/TVLSI.2018.2877438

    16. [16]

      CAO Yuan, ZHANG Le, CHEN Shoushun, et al. A low-power hybrid RO PUF with improved thermal stability for lightweight applications[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1143–1147. doi: 10.1109/tcad.2015.2424955

    17. [17]

      LIU Weiqiang, YU Yifei, WANG Chenghua, et al. RO PUF design in FPGAs with new comparison strategies[C]. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 2015: 77–80. doi: 10.1109/ISCAS.2015.7168574.

    18. [18]

      徐金甫, 吴缙. 一种基于动态环形振荡器物理不可克隆函数统计模型的频率排序算法[J]. 电子与信息学报, 2019, 41(3): 717–724. doi: 10.11999/JEIT180405
      XU Jinfu and WU Jin. Frequency sorting algorithm based on dynamic ring oscillator physical unclonable function statistical model[J]. Journal of Electronics &Information Technology, 2019, 41(3): 717–724. doi: 10.11999/JEIT180405

    19. [19]

      KUMAR R, PATIL V C, and KUNDU S. On design of temperature invariant physically unclonable functions based on ring oscillators[C]. 2012 IEEE Computer Society Annual Symposium on VLSI, Amherst, USA, 2012: 165–170. doi: 10.1109/ISVLSI.2012.66.

    20. [20]

      SOCHER E, BEER S M, and NEMIROVSKY Y. Temperature sensitivity of SOI-CMOS transistors for use in uncooled thermal sensing[J]. IEEE Transactions on Electron Devices, 2005, 52(12): 2784–2790. doi: 10.1109/TED.2005.859664

    21. [21]

      KODÝTEK F, LÓRENCZ R, and BUČEK J. Improved ring oscillator PUF on FPGA and its properties[J]. Microprocessors and Microsystems, 2016, 47: 55–63. doi: 10.1016/j.micpro.2016.02.005

    1. [1]

      徐宇, 林郁, 杨海钢. FPGA双端口存储器映射优化算法. 电子与信息学报,

    2. [2]

      胡东伟. 5G LDPC码译码器实现. 电子与信息学报,

    3. [3]

      罗宇, 郭家松. 大位宽情况下的回滚式循环冗余校验算法. 电子与信息学报,

    4. [4]

      高巍, 蒋刚毅, 郁梅, 骆挺. 基于熵编码的立体视频加密与信息隐藏算法. 电子与信息学报,

    5. [5]

      江小平, 王妙羽, 丁昊, 李成华. 基于信道状态信息幅值-相位的被动式室内指纹定位. 电子与信息学报,

    6. [6]

      熊伟, 顾祥岐, 徐从安, 崔亚奇. 多编队目标先后出现时的无先验信息跟踪方法. 电子与信息学报,

    7. [7]

      陈建华, 和志圆, 王炯. 基于边信息改进的分布式信源编码方案. 电子与信息学报,

    8. [8]

      周杨, 张天骐. 多径环境下异步长码DS-CDMA信号伪码序列及信息序列盲估计. 电子与信息学报,

    9. [9]

      董亚非, 胡文晓, 钱梦瑶, 王越. 基于DNA适配体的荧光生物传感器. 电子与信息学报,

    10. [10]

      曾帅, 钱志华, 赵天烽, 任彦, 王育杰. 生存性条件约束下的软件定义光网络控制器部署算法. 电子与信息学报,

    11. [11]

      孙小君, 周晗, 闫广明. 基于新息的自适应增量Kalman滤波器. 电子与信息学报,

    12. [12]

      雷维嘉, 杨苗苗. 时间反转多用户系统中保密和速率优化的预处理滤波器设计. 电子与信息学报,

    13. [13]

      黄静琪, 胡琛, 孙山鹏, 高翔, 何兵. 一种基于异步传感器网络的空间目标分布式跟踪方法. 电子与信息学报,

    14. [14]

      刘焕淋, 杜理想, 陈勇, 胡会霞. 串扰感知的空分弹性光网络频谱转换器稀疏配置和资源分配方法. 电子与信息学报,

  • 图 1  不同RO的频率分布图

    图 2  ME-ROPUF整体框图

    图 3  HCRO结构

    图 4  电流饥饿逆变器

    图 5  3种震荡环频率随温度变化图

    图 6  震荡环在FPGA上的布局图

    图 7  位稳定性和位随机性分布图

    图 8  PUF的可靠性

    图 9  PUF的唯一性和均匀性

    表 1  预选区域性能指标

    预选区域(13, 17)(14, 17)(15, 17)(16, 17)(13, 16)(14, 16)(15, 16)(13, 15)(14, 15)
    ${S_{{\rm{puf}}}}$0.9630.9890.9860.9910.9740.9820.9900.9790.981
    ${U_{_{{\rm{puf}}}}}$0.4740.4920.4880.4890.4820.4860.4850.4870.491
    ${R_{_{{\rm{puf}}}}}$0.4640.4740.4850.4760.4780.4890.4810.4920.486
    ${V_{_{{\rm{puf}}}}}$0.7190.7410.7370.7400.7280.7340.7380.7330.736
    下载: 导出CSV
  • 加载中
图(9)表(1)
计量
  • PDF下载量:  6
  • 文章访问数:  156
  • HTML全文浏览量:  66
文章相关
  • 通讯作者:  孙子文, sunziwen@jiangnan.edu.cn
  • 收稿日期:  2019-12-19
  • 录用日期:  2020-05-30
  • 网络出版日期:  2020-06-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章