高级搜索

基于分圆法的一类素数平方周期跳频序列族

徐善顶 曹喜望 许广魁

引用本文: 徐善顶, 曹喜望, 许广魁. 基于分圆法的一类素数平方周期跳频序列族[J]. 电子与信息学报, 2015, 37(10): 2460-2465. doi: 10.11999/JEIT150168 shu
Citation:  Xu Shan-ding, Cao Xi-wang, Xu Guang-kui. Class of Optimal Frequency-hopping Sequences Set withthe Square of Prime Length Based on Cyclotomy[J]. Journal of Electronics and Information Technology, 2015, 37(10): 2460-2465. doi: 10.11999/JEIT150168 shu

基于分圆法的一类素数平方周期跳频序列族

摘要: 最大汉明相关与平均汉明相关是评价跳频序列族性能的两个重要参数。该文首先给出了源于Fermat商的广义分圆类的性质;其次,基于此广义分圆法构造了一类 Zp上的长度为p2 ,序列族的大小为p 的跳频序列族;最后证明了该跳频序列族关于最大汉明相关界与平均汉明相关界都是最优的。

English

    1. [1]

      Lempel A and Greenberger H. Families of sequences with optimal Hamming correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1): 90-94.

    2. [2]

      Peng D Y and Fan P Z. Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2004, 50(9): 2149-2154.

    3. [3]

      Peng D Y, Niu X H, Tang X H, et al.. The average Hamming correlation for the cubic polynomial hopping sequences[C]. International Conference on Wireless Communications and Mobile Computing, Crete, Greece, 2008: 464-469.

    4. [4]

      Ding C S and Yin J X. Sets of optimal frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3741-3745.

    5. [5]

      Zhang Y, Ke P H, and Zhang S Y. Optimal frequency-hopping sequences based on cyclotomy[C]. First International Workshop on Education Technology and Computer Science, Wuhan, China, 2009: 1122-1126.

    6. [6]

      Zhou Z C, Tang X H, Peng D Y, et al.. New constructions for optimal sets of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3831-3840.

    7. [7]

      Zeng X Y, Cai H, Tang X H, et al.. Optimal frequency hopping sequences of odd length[J]. IEEE Transactions on Information Theory, 2013, 59(5): 3237-3248.

    8. [8]

      Ren W L, Fu F W, and Zhou Z C. New sets of frequency-hopping sequences with optimal Hamming correlation[J]. Designs, Codes and Cryptography, 2014, 72(2): 423-434.

    9. [9]

      刘方, 彭代渊. 一类具有最优平均汉明相关特性的跳频序列族[J]. 电子与信息学报, 2010, 32(5): 1257-1261.

    10. [10]

      Liu F and Peng D Y. A class of frequency-hopping sequence family with optimal average Hamming correlation property[J]. Journal of Electronics Information Technology, 2010, 32(5): 1257-1261.

    11. [11]

      Liu F, Peng D Y, and Zhou Z C. A new frequency-hopping sequence set based upon generalized cyclotomy[J]. Designs, Codes and Cryptography, 2013, 69(2): 247-259.

    12. [12]

      柯品惠, 章海辉, 张胜元. 新的具有最优平均汉明相关性的跳频序列族[J]. 通信学报, 2012, 33(9): 168-175.

    13. [13]

      Ke P H, Zhang H H, and Zhang S Y. New class of frequency-hopping sequence set with optimal average Hamming correlation property[J]. Journal on Communications, 2012, 33(9): 168-175.

    14. [14]

      Zhang A X, Zhou Z C, and Feng K Q. A lower bound on the average Hamming correlation of frequency-hopping sequence sets[J]. Advances in Mathematics of Communications, 2015, 9(1): 55-62.

    15. [15]

      Kumar P V. Frequency-hopping code sequence designs having large linear span[J]. IEEE Transactions on Information Theory, 1988, 34(1): 146-151.

    16. [16]

      Chung J H and Yang K. A new class of balanced near-perfect nonlinear mappings and its application to sequence design[J]. IEEE Transactions on Information Theory, 2013, 59(2): 1090-1097.

    17. [17]

      Agoh T, Dilcher K, and Skula L. Fermat quotients for composite moduli[J]. Journal of Number Theory, 1997, 66(1): 29-50.

    18. [18]

      Chen Z X. Trace representation and linear complexity of binary sequences derived from Fermat quotients[J]. Science China, 2014, 57(11): 1-10.

    19. [19]

      Peng D Y, Peng T, and Fan P Y. Generalised class of cubic frequency-hopping sequences with large family size[J]. IEE Proceedings-Communications, 2005, 152(6): 897-902.

    20. [20]

      Peng D Y, Peng T, Tang X H, et al.. A class of optimal frequency hopping sequences based upon the theory of power residues[C]. Sequences and Their Applications (SETA 2008), Lexington, KY, USA, 2008: 188-196.

    1. [1]

      蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法. 电子与信息学报, 2020, 41(0): 1-7.

    2. [2]

      孙闽红, 丁辰伟, 张树奇, 鲁加战, 邵鹏飞. 基于统计相关差异的多基地雷达拖引欺骗干扰识别. 电子与信息学报, 2020, 42(0): 1-7.

    3. [3]

      袁庆军, 张勋成, 高杨, 王永娟. 轻量级分组密码PUFFIN的差分故障攻击. 电子与信息学报, 2020, 42(6): 1519-1525.

    4. [4]

      贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-9.

    5. [5]

      贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-8.

    6. [6]

      刘焕淋, 杜理想, 陈勇, 胡会霞. 串扰感知的空分弹性光网络频谱转换器稀疏配置和资源分配方法. 电子与信息学报, 2020, 42(7): 1718-1725.

    7. [7]

      邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配. 电子与信息学报, 2020, 41(0): 1-8.

    8. [8]

      吕晓德, 孙正豪, 刘忠胜, 张汉良, 刘平羽. 基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究. 电子与信息学报, 2020, 42(5): 1288-1296.

    9. [9]

      周牧, 李垚鲆, 谢良波, 蒲巧林, 田增山. 基于多核最大均值差异迁移学习的WLAN室内入侵检测方法. 电子与信息学报, 2020, 42(5): 1149-1157.

    10. [10]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法. 电子与信息学报, 2020, 42(0): 1-8.

  • 加载中
计量
  • PDF下载量:  400
  • 文章访问数:  467
  • HTML全文浏览量:  46
文章相关
  • 收稿日期:  2015-01-29
  • 录用日期:  2015-05-29
  • 刊出日期:  2015-10-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章