高级搜索

基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法

崔维嘉 张鹏 巴斌

引用本文: 崔维嘉, 张鹏, 巴斌. 基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法[J]. 电子与信息学报, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181 shu
Citation:  Weijia CUI, Peng ZHANG, Bin BA. Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination[J]. Journal of Electronics and Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181 shu

基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法

    作者简介: 崔维嘉: 男,1976年生,博士,副教授,研究方向为移动通信、信号处理等;
    张鹏: 男,1993年生,硕士生,研究方向为通信信号处理、稀疏重构等;
    巴斌: 男,1987年生,博士,讲师,研究方向为阵列信号处理、参数估计等
    通讯作者: 张鹏,ieu_zp@outlook.com
  • 基金项目: 国家自然科学基金(61401513)

摘要: 针对复杂环境下,单测量矢量(SMV)条件下的正交频分复用(OFDM)时延估计问题,该文提出了一种基于贝叶斯自动相关性确定(BARD)的稀疏重构时延估计算法。该算法运用贝叶斯框架,从进一步挖掘有用信息的角度入手,引入不对称的自动相关性确定(ARD)先验,融入参数估计过程中,有效提升了低信噪比(SNR)和SMV条件下的时延估计精度。该算法首先基于OFDM信号物理层协议数据单元估计出的信道频域响应构造稀疏化实数域表示模型,然后对模型中的噪声和稀疏系数矢量进行概率假设,同时引入自动相关性确定先验;最后根据贝叶斯框架,通过期望最大化(EM)算法求解超参数,实现对时延的估计。仿真实验表明,该算法具有更好的估计性能,在信噪比较高时更加贴近克拉美罗界(CRB)。同时基于通用软件无线电外设(USRP),利用实际信号对所提算法进行了有效性地验证。

English

    1. [1]

      VAN NEE R and PRASAD R. OFDM for Wireless Multimedia Communications[M]. Boston: Artech House, 2000: 3–4.

    2. [2]

      SEGURA M J, MUT V A, and PATIÑO H D. Mobile robot self-localization system using IR-UWB sensor in indoor environments[C]. 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, Italy, 2009: 29–34.

    3. [3]

      CHAN Y T, HANG H Y C, and CHING P C. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 10–16. doi: 10.1109/TVT.2005.861162

    4. [4]

      CELEBI H and ARSLAN H. Adaptive positioning systems for cognitive radios[C]. 2007 IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, 2007: 78–84.

    5. [5]

      LIU Ying and WANG Shuxun. TOA estimation method using fourth order cumulants[C]. 2000 International Conference on Signal Processing. 16th World Computer Congress 2000, Beijing, China, 2000: 210–214.

    6. [6]

      巴斌, 刘国春, 李韬, 等. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计[J]. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
      BA Bin, LIU Guochun, LI Tao, et al. Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product[J]. Acta Physica Sinica, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403

    7. [7]

      BIALER O, RAPHAELI D, and WEISS A J. Robust time-of-arrival estimation in multipath channels with OFDM signals[C]. 2017 Signal Processing Conference, Kos, Greece, 2017: 2724–2728.

    8. [8]

      CHEN Yajun, PENG Jianhua, HUANG Kaizhi, et al. A multipath delay estimation model and algorithm in OFDM systems[C]. 2014 IEEE International Conference on Information Science and Technology, Shenzhen, China, 2014: 144–147.

    9. [9]

      巴斌, 郑娜娥, 胡捍英, 等. OFDM系统中基于PM的时延估计算法[J]. 太赫兹科学与电子信息学报, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355
      BA Bin, ZHENG Nae, HU Hanying, et al. Time delay estimation based on PM in OFDM system[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355

    10. [10]

      LI Xinrong and PAHLAVAN K. Super-resolution TOA estimation with diversity for indoor geolocation[J]. IEEE Transactions on Wireless Communications, 2004, 3(1): 224–234. doi: 10.1109/TWC.2003.819035

    11. [11]

      HÄCKER P and YANG B. Single snapshot DOA estimation[J]. Advances in Radio Science, 2010, 8: 251–256. doi: 10.5194/ars-8-251-2010

    12. [12]

      李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法[J]. 物理学报, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
      LI Jing, ZHAO Yongjun, and LI Donghai. Time delay estimation using Markov Chain Monte Carlo method[J]. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701

    13. [13]

      冷雪冬, 巴斌, 逯志宇, 等. 基于回溯筛选的稀疏重构时延估计算法[J]. 物理学报, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
      LENG Xuedong, BA Bin, LU Zhiyu, et al. Sparse reconstruction time delay estimation algorithm based on backtracking filter[J]. Acta Physica Sinica, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701

    14. [14]

      COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172

    15. [15]

      尹艳玲, 乔钢, 刘凇佐, 等. 基于基追踪去噪的水声正交频分复用稀疏信道估计[J]. 物理学报, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
      YIN Yanling, QIAO Gang, LIU Songzuo, et al. Sparse channel estimation of underwater acoustic orthogonal frequency division Multiplexing based on basis pursuit denoising[J]. Acta Physica Sinica, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301

    16. [16]

      NEAL R M. Bayesian Learning for Neural Networks[M]. New York: Springer-Verlag, 1996: 112–114.

    17. [17]

      WIPF D and NAGARAJAN S. A new view of automatic relevance determination[C]. The 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1625–1632.

    18. [18]

      GAST M S, O’Reilly Taiwan公司, 译. 802.11无线网络权威指南[M]. 2版. 南京: 东南大学出版社, 2007: 293–297.
      GAST M S, O’Reilly Taiwan, translation. 802.11 Wireless Netwoeks: The Definitive Guide[M]. 2nd ed. Nanjing: Southeast University Press, 2007: 293–297.

    19. [19]

      KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529

    1. [1]

      江小平, 王妙羽, 丁昊, 李成华. 基于信道状态信息幅值-相位的被动式室内指纹定位. 电子与信息学报, 2020, 42(5): 1165-1171.

    2. [2]

      张天骐, 范聪聪, 葛宛营, 张天. 基于ICA和特征提取的MIMO信号调制识别算法. 电子与信息学报, 2020, 41(0): 1-8.

    3. [3]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    4. [4]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    5. [5]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报, 2020, 42(5): 1102-1109.

    6. [6]

      刘小燕, 李照明, 段嘉旭, 项天远. 基于卷积神经网络的PCB板色环电阻检测与定位方法. 电子与信息学报, 2020, 41(0): 1-10.

    7. [7]

      邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配. 电子与信息学报, 2020, 41(0): 1-8.

    8. [8]

      申铉京, 沈哲, 黄永平, 王玉. 基于非局部操作的深度卷积神经网络车位占用检测算法. 电子与信息学报, 2020, 41(0): 1-8.

    9. [9]

      柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法. 电子与信息学报, 2020, 42(0): 1-8.

    10. [10]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于时频集中度指标的多旋翼无人机微动特征参数估计方法. 电子与信息学报, 2020, 42(0): 1-8.

    11. [11]

      晋守博, 魏章志, 李耀红. 基于大通讯时滞的2阶多智能体系统的一致性分析. 电子与信息学报, 2020, 42(0): 1-6.

    12. [12]

      吕敬祥, 罗文浪. 无线传感网络量化及能量优化策略. 电子与信息学报, 2020, 42(5): 1118-1124.

    13. [13]

      张文明, 姚振飞, 高雅昆, 李海滨. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型. 电子与信息学报, 2020, 42(5): 1201-1208.

    14. [14]

      赵国繁, 唐伦, 胡彦娟, 赵培培, 陈前斌. 面向可靠性的5G网络切片重构及映射算法. 电子与信息学报, 2020, 42(6): 1478-1485.

    15. [15]

      刘焕淋, 杜理想, 陈勇, 王展鹏. 基于灾难预测多区域故障的虚拟光网络生存性映射. 电子与信息学报, 2020, 42(7): 1710-1717.

    16. [16]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报, 2020, 42(0): 1-8.

    17. [17]

      吴奇, 陈鸿昶. 软件定义网络容错控制平面的最小覆盖布局方法. 电子与信息学报, 2020, 42(0): 1-8.

    18. [18]

      张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略. 电子与信息学报, 2020, 42(6): 1444-1451.

    19. [19]

      左志斌, 常朝稳, 祝现威. 一种基于数据平面可编程的软件定义网络报文转发验证机制. 电子与信息学报, 2020, 42(5): 1110-1117.

    20. [20]

      马彬, 王梦雪, 谢显中. 超密集异构无线网络中基于位置预测的切换算法. 电子与信息学报, 2020, 42(0): 1-9.

  • 图 1  贝叶斯推断理论框图

    图 2  时延估计值分布图

    图 3  不同算法均方根误差对比图

    图 4  不同多径数条件下直达径时延估计RMSE对比图

    图 5  实际信号测试场景

    表 1  OFDM系统参数设置

    参数数值
    FFT周期${T_{{\rm{FFT}}}}(\mu s)$3.2
    系统带宽$B({\rm{MHz}})$20
    子载波数(个)64
    载波频率${f_{\rm{c}}}{\rm{(GHz}})$2.4
    下载: 导出CSV

    表 2  各种算法时延估计结果比较(ns)

    算法多径序号
    1234
    均值RMSE均值均值均值
    PM218.4010.81270.93302.16308.16
    CoSaMP211.0010.57262.33287.50298.06
    MFOCUSS204.164.50258.16287.66307.20
    BARD201.531.17253.00283.00314.32
    下载: 导出CSV
  • 加载中
图(5)表(2)
计量
  • PDF下载量:  34
  • 文章访问数:  1031
  • HTML全文浏览量:  569
文章相关
  • 通讯作者:  张鹏, ieu_zp@outlook.com
  • 收稿日期:  2018-12-24
  • 录用日期:  2019-04-12
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-10-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章