高级搜索

一种L波段相控阵微波辐射计射频干扰检测算法

李浩 卢海梁 余锐 吕容川 李一楠 王佳坤 苗俊刚

引用本文: 李浩, 卢海梁, 余锐, 吕容川, 李一楠, 王佳坤, 苗俊刚. 一种L波段相控阵微波辐射计射频干扰检测算法[J]. 电子与信息学报, 2019, 41(1): 172-179. doi: 10.11999/JEIT180203 shu
Citation:  Hao LI, Hailiang LU, Rui YU, Rongchuan LÜ, Yinan LI, Jiakun WANG, Jungang MIAO. Radio-frequency Interference Detection Algorithm for L-band Phased Array Microwave Radiometer[J]. Journal of Electronics and Information Technology, 2019, 41(1): 172-179. doi: 10.11999/JEIT180203 shu

一种L波段相控阵微波辐射计射频干扰检测算法

    作者简介: 李浩: 男,1980年生,研究员,研究方向为全极化微波辐射计、综合孔径微波辐射计系统设计等;
    卢海梁: 男,1986年生,博士,研究方向为被动微波辐射无源探测、被动微波遥感、射频干扰检测等;
    余锐: 男,1983年生,高级工程师,研究方向为被动微波遥感、微波辐射计系统设计等;
    吕容川: 女,1982年生,高级工程师,研究方向为全极化微波辐射计、被动微波遥感、大气探测等;
    李一楠: 男,1985年生,高级工程师,研究方向为被动微波遥感、综合孔径微波辐射计系统设计等;
    王佳坤: 女,1992年生,工程师,研究方向为被动微波遥感、被动微波辐射无源探测等;
    苗俊刚: 男,1963年生,教授,博士生导师,研究方向为微波遥感理论与技术、毫米波亚毫米波技术等
    通讯作者: 卢海梁,396689lhl@163.com
  • 基金项目: 国家自然科学基金(41706204),钱学森青年创新基金(QXSCXJJ2017-504),中国空间技术研究院西安分院自主研发课题(Y17-KJCX-04)

摘要: 目前,微波辐射计均面临严重的射频干扰(RFI)问题,尤其在低频段。针对一种用于获取海洋盐度和土壤湿度的L波段相控阵微波辐射计,该文提出一种射频干扰检测算法。首先,简单介绍了该L波段相控阵微波辐射计系统;随后,详细介绍该射频干扰算法,其主要包括RFI初标识、RFI滑动窗口1次标识、RFI滑动窗口2次标识和RFI扩展标识等4个步骤;最后,采用该算法对L波段相控阵微波辐射计的实验数据进行处理。实验结果均表明:该算法能够较好地检测出射频干扰异常数据,检测性能较好。

English

    1. [1]

      张祖荫, 林士杰. 微波辐射测量技术及应用[M]. 北京: 电子工业出版社, 1995: 166–203.
      ZHANG Zuyin and LIN Shijie. Microwave Radiation Measurement Technology and Application[M]. Beijing: Electronic Industry Press, 1995: 166–203.

    2. [2]

      OLIVA R, DAGANZO E, KERR Y H, et al. SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400-1427 MHz passive band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1427–1439. doi: 10.1109/TGRS.2012.2182775

    3. [3]

      DAGANZO E, OLIVA R, KERR Y H, et al. SMOS radiometer in the 1400-1427 MHz passive band: Impact of the RFI environment and approach to its mitigation and cancellation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4999–5007. doi: 10.1109/TGRS.2013.2259179

    4. [4]

      MISRA S and RUF C S. Detection of radio-frequency interference for the Aquarius radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3123–3128. doi: 10.1109/TGRS.2008.920371

    5. [5]

      BRADLEY D, BRAMBORA C, WONG M E, et al. Radio-Frequency Interference (RFI) mitigation for the Soil Moisture Active/Passive (SMAP) radiometer[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2010: 2015–2018. doi: 10.1109/IGARSS.2010.5652482.

    6. [6]

      AKSOY M, JOHNSON J T, MISRA S, et al. L-band radio-frequency interference observations during the SMAP validation experiment 2012[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1323–1335. doi: 10.1109/TGRS.2015.2477686

    7. [7]

      International Telecommunications Union, Radio Regulations, vol. I[S], Geneva, Switzerland, 2008.

    8. [8]

      中华人民共和国无线电频率划分规定[S]. 2006.
      Regulation of radio frequency division in People's Republic of China[S]. 2006

    9. [9]

      LI L, GAISER P W, BETTENHAUSEN M H, et al. WindSat radio-frequency interference signature and its identification over land and ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(3): 530–539. doi: 10.1109/TGRS.2005.862503

    10. [10]

      NJOKU E G, ASHCROFT P, CHAN T K, et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 938–947. doi: 10.1109/TGRS.2004.837507

    11. [11]

      FENG Chengcheng, ZOU Xiaolei, ZHAO Juan. Detection of radio-frequency interference signals from AMSR-E data over the United States with snow cover[J]. Frontiers of Earth Science, 2016, 10(2): 195–204. doi: 10.1007/s11707-015-0509-4

    12. [12]

      官莉, 夏仕昌, 张思勃. 大面积水体上空星载微波辐射计的干扰识别[J]. 应用气象学报, 2015, 26(1): 22–31. doi: 10.11898/1001-7313.20150103
      GUAN Li, XIA Shichang, and ZHANG Sibo. Identifying the interference of space-borne microwave radiometer over large water area[J]. Journal of Applied Meteorological Science, 2015, 26(1): 22–31. doi: 10.11898/1001-7313.20150103

    13. [13]

      SKOU N, MISRA S, BALLING J E, et al. L-band RFI as experienced during airborne campaigns in preparation for SMOS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1398–1407. doi: 10.1109/TGRS.2009.2031637

    14. [14]

      AKSOY M, PARK J, and JOHNSON J T. Joint analysis of radio frequency interference from SMOS measurements and from airborne observations[C]. Proceedings of General Assembly and Scientific Symposium Symposium, Istanbul, Turkey, 2011: 1–4.

    15. [15]

      卢海梁, 李青侠, 李炎, 等. 基于SMOS卫星数据的中国地区L波段射频干扰研究[J]. 微波学报, 2016, 32(1): 86–91. doi: 10.14183/j.cnki.1005-6122.201601019
      LU Hailiang, LI Qingxia, LI Yan, et al. A study of L-band radio frequency interference over China based on SMOS data[J]. Journal of Microwaves, 2016, 32(1): 86–91. doi: 10.14183/j.cnki.1005-6122.201601019

    16. [16]

      LU Hailiang, LI Qingxia, LI Yan, et al. Low-level radio-frequency interference detection algorithm based on European centre for medium-range weather forecasting for the soil moisture and ocean salinity mission[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095996. doi: 10.1117/1.JRS.9.095996

    17. [17]

      卢海梁. 星载综合孔径微波辐射计校正和定标及射频干扰检测[D]. [博士论文], 华中科技大学, 2016.
      LU Hailiang. Correction & calibration and radio frequency interference detection for on-board aperture synthesis radiometers[D]. [Ph. D. dissertation], Huazhong University of Science & Technology, 2016.

    18. [18]

      MISRA S and RUF C S. Analysis of radio frequency interference detection algorithms in the angular domain for SMOS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1448–1457. doi: 10.1109/TGRS.2011.2176949

    19. [19]

      LU Hailiang, LI Yinan, YU Rui, et al. A L-band phased array radiometer for sea surface salinity[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 2935–2938.

    20. [20]

      牛雪杰, 崔华阳, 余锐. 一种用于微波辐射计的双极化相控阵天线系统设计[J]. 空间电子技术, 2015, 5: 14–17. doi: 10.3969/j.issn.1674-7135.2015.05.003
      NIU Xuejie, CUI Huayang, and YU Rui. A dual-polarized phased array antenna system of microwave radiometer[J]. Space Electronic Technology, 2015, 5: 14–17. doi: 10.3969/j.issn.1674-7135.2015.05.003

    21. [21]

      姜涛, 赵凯, 万祥坤. L波段微波辐射计脉冲式干扰时域检测方法研究[J]. 电子与信息学报, 2018, 40(7): 1539–1545. doi: 10.11999/JEIT170954
      JIANG Tao, ZHAO Kai, and WAN Xiangkun. Research on detection methods to periodic pulsed interference for L band microwave radiometer in time domain[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1539–1545. doi: 10.11999/JEIT170954

    22. [22]

      KHAZAAL A, CABOT F, ANTERRIEU E, et al. A kurtosis-based approach to detect RFI in SMOS image reconstruction data processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7038–7047. doi: 10.1109/TGRS.2014.2306713

    1. [1]

      姜涛, 赵凯, 万祥坤. L波段微波辐射计周期脉冲式干扰时域检测方法研究. 电子与信息学报, 2018, 40(7): 1539-1545.

    2. [2]

      王新新, 王祥, 韩震, 杨建洪. 基于L波段Stokes参数遥感数据射频干扰检测及特性分析. 电子与信息学报, 2015, 37(10): 2342-2348.

    3. [3]

      姚传亮, 金亚秋, 赵银龙, 方振和, 张南雄, 章俊. 新型X波段散射计辐射计组合系统. 电子与信息学报, 2000, 22(1): 137-143.

    4. [4]

      牛立杰, 刘浩, 武林, 张成, 赵鑫, 吴季, 殷晓斌. 面向星载海洋盐度探测应用的L波段综合孔径辐射计原理样机研制与试验研究. 电子与信息学报, 2017, 39(8): 1841-1847.

    5. [5]

      张成, 吴季. 基于加窗反投影的干涉式微波辐射计成像算法. 电子与信息学报, 2008, 30(5): 1064-1067.

    6. [6]

      李慧玲, 刘浩, 吴季, 牛立杰, 张成. 综合孔径辐射计可见度函数预处理算法及时域仿真研究. 电子与信息学报, 2012, 34(10): 2475-2481.

    7. [7]

      李靖, 张俊荣, 赵凯. 实时定标微波辐射计. 电子与信息学报, 1998, 20(2): 285-288.

    8. [8]

      王勤民, 张忠培, 结凤克, 党志军. 干扰对齐的分集检测算法研究. 电子与信息学报, 2012, 34(6): 1393-1397.

    9. [9]

      廖连常, 林士杰. 用微波辐射计测量天线辐射效率. 电子与信息学报, 1991, 13(6): 597-602.

    10. [10]

      孙慧贤, 刘建成, 崔佩璋, 全厚德, 唐友喜. 基于多通道最小均方算法的多发单收同车电台射频干扰对消. 电子与信息学报, 2019, 41(3): 556-562.

    11. [11]

      张祖荫, 吕颖. 微机在微波辐射计中的应用. 电子与信息学报, 1994, 16(1): 107-112.

    12. [12]

      曹蕾, 张欣, 杨大成. 频域均衡联合基于能量排序的部分并行干扰删除检测算法. 电子与信息学报, 2008, 30(6): 1416-1419.

    13. [13]

      陈建华, 谢希仁. 在自适应滤波器中干扰信号检测算法的研究. 电子与信息学报, 1999, 21(3): 420-423.

    14. [14]

      战立晓, 汤子跃, 朱振波. 一种米波相控阵雷达四代机目标检测算法. 电子与信息学报, 2013, 35(5): 1163-1169.

    15. [15]

      梅中辉, 吴乐南. 一种基于检测信息可靠度的部分软干扰消除迭代多用户检测算法. 电子与信息学报, 2006, 28(9): 1693-1696.

    16. [16]

      解恺, 丁雪洁, 孙贵青, 黄海宁, 李启虎. 基于目标辐射噪声的信号起伏检测算法研究. 电子与信息学报, 2013, 35(4): 844-851.

    17. [17]

      吕颖, 张祖荫, 郭伟, 漆兰芬. 星载微波辐射计周期定标技术的综述. 电子与信息学报, 1997, 19(5): 695-700.

    18. [18]

      孙逢林, 张升伟. 基于综合孔径辐射计稀疏阵列非均匀采样图像的快速重建. 电子与信息学报, 2013, 35(4): 927-932.

    19. [19]

      姚一佳, 朱世华, 胡刚, 张芳. MIMO系统中基于干扰子空间投影的盲空时多用户检测算法. 电子与信息学报, 2007, 29(9): 2195-2198.

    20. [20]

      申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法. 电子与信息学报, 2018, 40(12): 2970-2978.

  • 图 1  L 波段相控阵微波辐射计系统方框示意图

    图 2  L波段相控阵微波辐射计实物图

    图 3  L波段相控阵微波辐射计的波束扫描时序和定标时序分配示意图

    图 4  射频干扰检测算法流程图样例

    图 5  相控阵辐射计开展外场试验

    图 6  相控阵辐射计在两个观测角下的输出值

    图 7  在观测角33°下波束5—波束9的射频干扰检测算法前后的亮温数据的直方分布图

    图 8  在观测角51°下波束5—波束9的射频干扰检测算法前后的亮温数据的直方分布图

    表 1  L波段相控阵辐射计波束编号对应扫描角(°)

    波束编号12345678910111213
    扫描角度–30–25–20–15–10–5051015202530
    下载: 导出CSV

    表 2  射频干扰检测算法中各参量值

    波束编号${T_m}$${T_{\det }}$${W_S}$${W_r}$
    5~952101
    下载: 导出CSV

    表 3  观测角33°时的Kurtosis值

    波束5波束6波束7波束8波束9
    原始数据的$\kappa $值284.47254.8319.50214.60129.08
    RFI后的$\kappa $值2.842.912.832.852.73
    下载: 导出CSV

    表 4  观测角51°时的Kurtosis值

    波束5波束6波束7波束8波束9
    原始数据的$\kappa $值587.64362.80163.46158.29123.89
    RFI后的$\kappa $值2.572.582.912.732.70
    下载: 导出CSV
  • 加载中
图(8)表(4)
计量
  • PDF下载量:  42
  • 文章访问数:  338
  • HTML全文浏览量:  175
文章相关
  • 通讯作者:  卢海梁, 396689lhl@163.com
  • 收稿日期:  2018-02-28
  • 录用日期:  2018-10-10
  • 网络出版日期:  2018-10-22
  • 刊出日期:  2019-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章