高级搜索

基于频谱校正的中国余数定理多普勒频率估计算法

曹成虎 赵永波 索之玲 庞晓娇 徐保庆

引用本文: 曹成虎, 赵永波, 索之玲, 庞晓娇, 徐保庆. 基于频谱校正的中国余数定理多普勒频率估计算法[J]. 电子与信息学报, doi: 10.11999/JEIT181102 shu
Citation:  Chenghu CAO, Yongbo ZHAO, Zhiling SUO, Xiaojiao PANG, Baoqing XU. Doppler Frequency Estimation Method Based on Chinese Remainder Theorem with Spectrum Correction[J]. Journal of Electronics and Information Technology, doi: 10.11999/JEIT181102 shu

基于频谱校正的中国余数定理多普勒频率估计算法

    作者简介: 曹成虎: 男,1987年生,博士生,研究方向为雷达信号处理和雷达信号检测与跟踪;
    赵永波: 男,1972年生,教授,博士生导师,研究方向雷达信号处理、自适应信号处理和雷达信号参数估计;
    索之玲: 女,1981年生,博士生,研究方向弱目标检测技术;
    庞晓娇: 女,1993年生,博士生,研究方向压缩感知和阵列信号处理;
    徐保庆: 男,1992年生,博士生,研究方向雷达信号处理和MIMO雷达
    通讯作者: 赵永波,ybzhao@xidian.edu.cn
  • 基金项目: 高等学校学科创新引智计划(B18039)

摘要: 脉冲多普勒(PD)雷达能够检测目标多普勒频率和有效抑制杂波,该优势使得PD雷达得到了广泛应用。但速度模糊的存在,往往对PD目标检测带来困难。该文紧密结合PD雷达体制的特点,在基于PD雷达参差重频模式下,提出一种基于全相位离散傅里叶变换(DFT)相位差频谱校正的最优余数封闭式鲁棒中国余数定理(CFRCRT)的多普勒频率估计算法。理论分析和仿真实验表明该文算法在测量精度和实时性能上可以满足工程上应用的需求。

English

    1. [1]

      CHUANG Tingwei, CHEN C C, and CHIEN B. Image sharing and recovering based on Chinese remainder theorem[C]. Proceedings of International Symposium on Computer, Consumer and Control, Xi’an, China, 2016: 817–820.

    2. [2]

      XIAO Hanshen, HUANG Yufeng, YE Yu, et al. Robustness in Chinese remainder theorem for multiple numbers and remainder coding[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4347–4361. doi: 10.1109/TSP.2018.2846228

    3. [3]

      LU Dianjun, WANG Yu, ZHANG Xiaoqin, et al. A threshold secret sharing scheme based on LMCA and Chinese remainder theorem[C]. Proceedings of the 9th International Symposium on Computational Intelligence and Design, Hangzhou, China, 2016: 439–442.

    4. [4]

      CHEN Jinrui, LIU Kesheng, YAN Xuehu, et al. An information hiding scheme based on Chinese remainder theorem[C]. Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing, Chongqing, China, 2018: 785–790.

    5. [5]

      LIN E and MONTE L. Joint frequency and angle of arrival estimation using the Chinese remainder theorem[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, WA, USA, 2017: 1547–1551.

    6. [6]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. A closed-form robust Chinese remainder theorem based Multibaseline phase unwrapping[C]. Proceedings of 2017 International Conference on Circuits, Devices and Systems, Chengdu, China, 2017: 115–119.

    7. [7]

      JIANG Zhibiao, WANG Jian, SONG Qian, et al. Multibaseline phase unwrapping through robust Chinese remainder theorem[C]. Proceedings of the 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies, Xi’an, China, 2017: 462–466.

    8. [8]

      SILVA Band FRAIDENRAICH G. Performance analysis of the classic and robust Chinese remainder theorems in pulsed Doppler radars[J]. IEEE Transactions on Signal Processing, 2018, 66(18): 4898–4903. doi: 10.1109/TSP.2018.2863667

    9. [9]

      LI Xiaoping, WANG Wenjie, YANG Bin, et al. Distance estimation based on phase detection with robust Chinese remainder theorem[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 4204–4208.

    10. [10]

      WANG Qian, YAN Xiao, and QIN Kaiyu. Parameters estimation algorithm for the exponential signal by the interpolated all-phase DFT Approach[C]. Proceedings of the 11th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2014: 37–41.

    11. [11]

      王文杰, 李小平. 鲁棒的闭式中国余数定理及其在欠采样频率估计中的应用[J]. 信号处理, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017
      WANG Wenjie and LI Xiaoping. The closed-form robust Chinese remainder theorem and its application in frequency estimation with Undersampling[J]. Journal of Signal Processing, 2013, 29(9): 1206–1211. doi: 10.3969/j.issn.1003-0530.2013.09.017

    12. [12]

      CANDAN Ç. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011, 18(6): 351–354. doi: 10.1109/LSP.2011.2136378

    13. [13]

      CANDAN Ç. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples[J]. IEEE Signal Processing Letters, 2013, 20(9): 913–916. doi: 10.1109/LSP.2013.2273616

    14. [14]

      ABOUTANIOS E and MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1237–1242. doi: 10.1109/TSP.2005.843719

    15. [15]

      BELEGA D, PETRI D, and DALLET D. Iterative sine-wave frequency estimation by generalized Fourier interpolation algorithms[C]. Proceedings of the 11th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 2014: 1–4.

    16. [16]

      GAO Yue, ZHANG Xiong, and SONG Jun. Modified algorithm of sinusoid signal frequency estimation based on Quinn and Aboutanios iterative algorithms[C]. Proceedings of the 13th International Conference on Signal Processing, Chengdu, China, 2016: 232–235.

    17. [17]

      LU Xinning and ZHANG Yonghui. Phase detection algorithm and precision analysis based on all phase FFT[C]. Proceedings of the International Conference on Automatic Control and Artificial Intelligence, Xiamen, China, 2012: 1564–1567.

    18. [18]

      LI Xiaowei, LIANG Hong, and XIA Xianggen. A robust Chinese remainder theorem with its applications in frequency estimation from undersampled waveforms[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4314–4322. doi: 10.1109/TSP.2009.2025079

    19. [19]

      WANG Wei, LI Xiaoping, XIA Xianggen, et al. The largest dynamic range of a generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2015, 22(2): 254–258. doi: 10.1109/LSP.2014.2322200

    20. [20]

      XIAO Li, XIA Xianggen. A generalized Chinese remainder theorem for two integers[J]. IEEE Signal Processing Letters, 2014, 21(1): 55–59. doi: 10.1109/LSP.2013.2289326

    1. [1]

      孟智超, 卢景月, 谢朋飞, 张磊, 王虹现. 无人机载多普勒分集前视合成孔径雷达成像方法. 电子与信息学报,

    2. [2]

      王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法. 电子与信息学报,

    3. [3]

      赵秉吉, 张庆君, 戴超, 刘立平, 唐治华, 舒卫平, 倪崇. 一种新的GEOSAR快速零多普勒中心二维姿态导引方法. 电子与信息学报,

    4. [4]

      李宁, 别博文, 邢孟道, 孙光才. 基于多普勒重采样的恒加速度大斜视SAR成像算法. 电子与信息学报,

    5. [5]

      潘洁, 王帅, 李道京, 卢晓春. 基于方向图和多普勒相关系数的天基阵列SAR通道相位误差补偿方法. 电子与信息学报,

    6. [6]

      刘伯权, 郭佳佳, 罗治民. 声表面波谐振器回波信号的频率估计. 电子与信息学报,

    7. [7]

      赵勇胜, 胡德秀, 刘智鑫, 赵拥军, 赵闯. 基于相邻互相关函数-参数化中心频率-调频率分布-Keystone变换的无源雷达机动目标相参积累方法. 电子与信息学报,

    8. [8]

      汪海波, 黄文华, 巴涛, 姜悦. 短脉冲非相参雷达的逆合成孔径成像及其稀疏恢复成像技术. 电子与信息学报,

    9. [9]

      宋晨, 周良将, 吴一戎, 丁赤飚. 基于自相关-倒谱联合分析的无人机旋翼转动频率估计方法. 电子与信息学报,

    10. [10]

      赵杨, 尚朝轩, 韩壮志, 韩宁, 解辉. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰. 电子与信息学报,

    11. [11]

      于存谦, 张黎, 何荣希. 弹性光网络基于区分降级服务和自适应调制的动态路由与频谱分配算法. 电子与信息学报,

    12. [12]

      张天骐, 张华伟, 刘董华, 李群. 基于区域增长校正的频域盲源分离排序算法. 电子与信息学报,

    13. [13]

      陈潇翔, 邢孟道, 孙光才, 景国彬. 一种超宽带10 GHz微波光子雷达包络与相位联合运动误差估计方法. 电子与信息学报,

    14. [14]

      任凯强, 孙正波. 基于虚拟参考站的同步三星时差定位系统广域差分校正算法. 电子与信息学报,

    15. [15]

      左燕, 陈志猛, 蔡立平. 基于约束总体最小二乘的单站DOA/TDOA联合误差校正与定位算法. 电子与信息学报,

    16. [16]

      杜晓燕, 乔江, 卫佩佩. 一种用于中国地区的对流层天顶延迟实时修正模型. 电子与信息学报,

    17. [17]

      渠晓东, 孙阳, 陈冲, 石俊龙, 许鑫, 李巨涛, 朱万华, 方广有. 超短基线电磁脉冲阵在电磁辐射源测向中的应用. 电子与信息学报,

    18. [18]

      徐少平, 张贵珍, 李崇禧, 刘婷云, 唐祎玲. 基于深度置信网络的随机脉冲噪声快速检测算法. 电子与信息学报,

    19. [19]

      罗忠涛, 卢鹏, 张杨勇, 张刚. 抑制脉冲型噪声的限幅器自适应设计. 电子与信息学报,

    20. [20]

      张建中, 穆贺强, 文树梁, 李彦兵, 高红卫. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法. 电子与信息学报,

  • 图 1  传统DFT幅频响应和相频响应

    图 2  全相位DFT幅频响应和相频响应

    图 3  多普勒频率估计流程图

    图 4  中国余数定理算法测量频率的精度

    图 5  中国余数定理算法的时间复杂度

    图 6  基于频谱校正的封闭式鲁棒CRT测量精度

    图 7  基于频谱校正的封闭式鲁棒CRT计算复杂度

    表 1  基于谱校正的中国余数定理的方案测量结果(Hz)

    $F$${\hat f_{{\rm{r}}1}}$余数理论值${\hat f_{{\rm{r}}2}}$余数理论值${\hat f_{{\rm{r}}3}}$余数理论值$\Delta F$
    ${\rm{5}}{\rm{.5122}} \times {\rm{1}}{{\rm{0}}^{\rm{3}}}$${\rm{512}}{\rm{.60}}$$512$${\rm{5512}}{\rm{.65}}$$5512$${\rm{5512}}{\rm{.90}}$$5512$${\rm{1}}.57 \times {\rm{1}}{{\rm{0}}^{{\rm{ - 1}}}}$
    $512.58$$5512.57$$5512.58$$1.66 \times {10^{ - 1}}$
    $515.04$$5516.01$$5516.97$$3.41 \times {10^0}$
    ${\rm{3}}{\rm{.1157}} \times {\rm{1}}{{\rm{0}}^{\rm{5}}}$$1569.27$$1570$$3569.69$$3570$$5569.80$$5570$$2.03 \times {10^{ - 2}}$
    $1568.72$$3568.70$$5568.95$$4.99 \times {10^{ - 2}}$
    $1574.25$$3566.42$$5574.39$$8.42 \times {10^{ - 1}}$
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  28
  • 文章访问数:  900
  • HTML全文浏览量:  286
文章相关
  • 通讯作者:  赵永波, ybzhao@xidian.edu.cn
  • 收稿日期:  2018-11-28
  • 录用日期:  2019-04-12
  • 网络出版日期:  2019-05-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章