高级搜索

能耗和时延感知的虚拟化云无线接入网络资源分配机制

王汝言 徐宁宁 吴大鹏

引用本文: 王汝言, 徐宁宁, 吴大鹏. 能耗和时延感知的虚拟化云无线接入网络资源分配机制[J]. 电子与信息学报, 2019, 41(1): 83-90. doi: 10.11999/JEIT180063 shu
Citation:  Ruyan WANG, Ningning XU, Dapeng WU. Energy Consumption and Delay-aware Resource Allocation Mechanism for Virtualization Cloud Radio Access Network[J]. Journal of Electronics and Information Technology, 2019, 41(1): 83-90. doi: 10.11999/JEIT180063 shu

能耗和时延感知的虚拟化云无线接入网络资源分配机制

    作者简介: 王汝言: 男,1969年生,博士,教授,研究方向为泛在网络、全光网络理论与技术、多媒体信息处理等;
    徐宁宁: 女,1993年生,硕士生,研究方向为光无线融合网络;
    吴大鹏: 男,1979年生,博士,教授,研究方向为泛在无线网络、社会计算、互联网服务质量控制等
    通讯作者: 徐宁宁,753113493@qq.com
  • 基金项目: 国家自然科学基金(61371097, 61771082);重庆市高校创新团队建设计划(CXTDX201601020)

摘要: 针对现有虚拟化云无线接入网络(C-RAN)资源利用率低、能耗高、用户服务质量无法得到保证等问题,该文提出一种能耗和时延感知的虚拟化资源分配机制。根据虚拟化C-RAN的网络特点及业务流量特征,考虑资源约束和比例公平,建立能耗和时延优化模型。进而,利用启发式算法为不同类型虚拟C-RAN和用户虚拟基站分配资源,完成资源的全局优化配置。仿真结果表明,所提资源分配机制在提高网络资源利用率的同时,不但使能耗节省了62.99%,还使时延降低了32.32%。

English

    1. [1]

      CISCO. Global mobile data traffic forecast update, 2016–2021 White Paper[R]. San Jose: CISCO/1465272001663118, 2017.

    2. [2]

      AROUK O, KSENTINI A, and TALEB T. Group paging-based energy saving for massive MTC accesses in LTE and beyond networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1086–1102. doi: 10.1109/JSAC.2016.2520222

    3. [3]

      HOSSAIN E and HASAN M. 5G cellular: Key enabling technologies and research challenges[J]. IEEE Instrumentation & Measurement Magazine, 2015, 18(3): 11–21. doi: 10.1109/MIM.2015.7108393

    4. [4]

      China Mobile Research Institute. C-RAN-The road towards green RAN[R]. Beijing: CMRI/Version 3.0, 2013.

    5. [5]

      THOMAS P. Next generation mobile fronthaul architectures[C]. 2015 Optical Fiber Communications Conference and Exhibition, Los Angeles, USA, 2015: 1–3.

    6. [6]

      MOHAMAD K, ARAFAT A D, MOHAMED S, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666

    7. [7]

      LIANG Chengchao and YU F R. Wireless network virtualization: A survey, some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 358–380. doi: 10.1109/COMST.2014.2352118

    8. [8]

      WANG Xinbo, CAVDAR C, WANG Lin, et al. Joint allocation of radio and optical resources in virtualized cloud RAN with CoMP[C]. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6.

    9. [9]

      WANG Xinbo, THOTA S, TORNATORE M, et al. Green virtual base station in optical-access-enabled cloud-RAN[C]. 2015 IEEE International Conference on Communications (ICC), London, UK, 2015: 5002–5006.

    10. [10]

      WANG Xinbo, THOTA S, TORNATORE M, et al. Energy-efficient virtual base station formation in optical-access-enabled cloud-RAN[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1130–1139. doi: 10.1109/JSAC.2016.2520247

    11. [11]

      WANG Xinbo, CAVDAR C, WANG Lin, et al. Virtualized cloud radio access network for 5G transport[J]. IEEE Communications Magazine, 2017, 55(9): 202–209. doi: 10.1109/MCOM.2017.1600866

    12. [12]

      TAN Zhongwei, YANG Chuanchuan, and WANG Ziyu. Energy consume analysis for ring-topology TWDM-PON fronthaul enabled cloud RAN[J]. IEEE Journal of Lightwave Technology, 2017, 35(20): 4526–4534. doi: 10.1109/JLT.2017.2745998

    13. [13]

      LI Yi, GURSOY M C, and VELIPASALAR S. Intercell interference-aware scheduling for delay sensitive applications in C-RAN[OL]. http://arxiv.org/abs/1708.00852v1, 2017.

    14. [14]

      AMEL A, SOUMAYA H, LOUTFI N, et al. Minimization of delays in multi-service cloud-RAN BBU pools[C]. 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 2017: 1846–1850.

    15. [15]

      LI Jian, PENG Mugen, CHEN Aolin, et al. Resource allocation optimization for delay-sensitive traffic in fronthaul constrained cloud radio access networks[J]. IEEE Systems Journal, 2017, 11(4): 2267–2278. doi: 10.1109/JSYST.2014.2364252

    16. [16]

      NIU Binglai, ZHOU Yong, HAMED S M, et al. A dynamic resource sharing mechanism for cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2017, 15(12): 8325–8338. doi: 10.1109/TWC.2016.2613896

    17. [17]

      IMAD A S, MATTEO A, HENRIK C, et al. Envisioning spectrum management in virtualised C-RAN[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.

    18. [18]

      BERND H, FARIBORZ D, HEIDRUN G L, et al. Radio base stations in the cloud[J]. Bell Labs Technical Journal, 2013, 18(1): 129–152. doi: 10.1002/bltj.21596

    1. [1]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    2. [2]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    3. [3]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报, 2020, 42(0): 1-8.

    4. [4]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报, 2020, 41(0): 1-9.

  • 图 1  小规模网络中不同业务流量下的能耗比较

    图 2  小规模网络中不同业务流量下的总业务时延比较

    图 3  12点时刻时延和能耗的权衡

    图 4  动态和静态算法的能耗比较

    图 5  动态和静态算法的总业务时延比较

  • 加载中
图(5)
计量
  • PDF下载量:  45
  • 文章访问数:  428
  • HTML全文浏览量:  245
文章相关
  • 通讯作者:  徐宁宁, 753113493@qq.com
  • 收稿日期:  2018-01-16
  • 录用日期:  2018-09-26
  • 网络出版日期:  2018-10-19
  • 刊出日期:  2019-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章