高级搜索

DNA计算与DNA纳米技术

王君珂 印珏 牛人杰 任少康 晁洁

引用本文: 王君珂, 印珏, 牛人杰, 任少康, 晁洁. DNA计算与DNA纳米技术[J]. 电子与信息学报, 2020, 42(6): 1313-1325. doi: 10.11999/JEIT190826 shu
Citation:  Junke WANG, Jue YIN, Renjie NIU, Shaokang REN, Jie CHAO. DNA Computing and DNA Nanotechnology[J]. Journal of Electronics and Information Technology, 2020, 42(6): 1313-1325. doi: 10.11999/JEIT190826 shu

DNA计算与DNA纳米技术

    作者简介: 王君珂: 女,1996年生,博士生,研究方向为DNA计算;
    印珏: 女,1994年生,博士生,研究方向为DNA计算;
    牛人杰: 女,1996年生,博士生,研究方向为DNA纳米结构组装与生物传感;
    任少康: 男,1993年生,博士生,研究方向为DNA纳米结构组装与生物计算;
    晁洁: 女,1981年生,研究员,博士生导师,研究方向为DNA计算与生物传感
    通讯作者: 晁洁,iamjchao@njupt.edu.cn
  • 基金项目: 国家自然科学基金(21922408, 61771253),江苏省自然科学基金(BK20190038)

摘要: 随着后摩尔时代的到来,传统硅基计算机的发展已经濒临极限,人们迫切需要发展新的计算技术满足科技与生活的需要。由于具有超强的并行运算能力和杰出的数据存储能力,DNA计算成为新型计算机技术的一个重要分支和热门研究对象。蓬勃发展的DNA纳米技术为DNA计算提供了新的发展平台。该文首先对DNA纳米技术进行简要介绍,然后按照DNA逻辑门、DNA级联逻辑回路、智能DNA分子机器的顺序对DNA计算的发展进行论述和展望。

English

    1. [1]

      ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651

    2. [2]

      王雷, 林亚平. DNA计算在整数规划问题中的应用[J]. 电子与信息学报, 2005, 27(5): 814–818.
      WANG Lei and LIN Yaping. DNA computation for a category of special integer planning problem[J]. Journal of Electronics &Information Technology, 2005, 27(5): 814–818.

    3. [3]

      吴雪, 赵艺. 最大加权独立集问题的DNA算法[J]. 电子与信息学报, 2007, 29(11): 2693–2697.
      WU Xue and ZHAO Yi. DNA solution of the maximum weighted independent set[J]. Journal of Electronics &Information Technology, 2007, 29(11): 2693–2697.

    4. [4]

      KALLENBACH N R, MA R I, and SEEMAN N C. An immobile nucleic acid junction constructed from oligonucleotides[J]. Nature, 1983, 305(5937): 829–831. doi: 10.1038/305829a0

    5. [5]

      FU T J and SEEMAN N C. DNA double-crossover molecules[J]. Biochemistry, 1992, 32(13): 3211–3220. doi: 10.1021/bi00064a003

    6. [6]

      WINFREE E, LIU Furong, WENZLER L A, et al. Design and self-assembly of two-dimensional DNA crystals[J]. Nature, 1998, 394(6693): 539–544. doi: 10.1038/28998

    7. [7]

      YAN Hao, PARK S H, FINKELSTEIN G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires[J]. Science, 2003, 301(5641): 1882–1884. doi: 10.1126/science.1089389

    8. [8]

      WEI B, DAI Mingjie, and YIN Peng. Complex shapes self-assembled from single-stranded DNA tiles[J]. Nature, 2012, 485(7400): 623–626. doi: 10.1038/nature11075

    9. [9]

      SHI Xiaolong, LU Wei, WANG Zhiyu, et al. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy[J]. Nanotechnology, 2014, 25(7): 075602. doi: 10.1088/0957-4484/25/7/075602

    10. [10]

      ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297–302. doi: 10.1038/nature04586

    11. [11]

      QIAN Lulu, WANG Ying, ZHANG Zhao, et al. Analogic China map constructed by DNA[J]. Chinese Science Bulletin, 2006, 51(24): 2973–2976. doi: 10.1007/s11434-006-2223-9

    12. [12]

      ANDERSEN E S, DONG Mingdong, NIELSEN M M, et al. DNA origami design of dolphin-shaped structures with flexible tails[J]. ACS Nano, 2008, 2(6): 1213–1218. doi: 10.1021/nn800215j

    13. [13]

      ZHANG Honglu, CHAO Jie, PAN Dun, et al. Folding super-sized DNA origami with scaffold strands from long-range PCR[J]. Chemical Communications, 2012, 48(51): 6405–6407. doi: 10.1039/c2cc32204h

    14. [14]

      DOUGLAS S M, DIETZ H, LIEDL T, et al. Self-assembly of DNA into nanoscale three-dimensional shapes[J]. Nature, 2009, 459(7245): 414–418. doi: 10.1038/nature08016

    15. [15]

      DOUGLAS S M, MARBLESTONE A H, TEERAPITTAYANON S, et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno[J]. Nucleic Acids Research, 2009, 37(15): 5001–5006. doi: 10.1093/nar/gkp436

    16. [16]

      DIETZ H, DOUGLAS S M, and SHIH W M. Folding DNA into twisted and curved nanoscale shapes[J]. Science, 2009, 325(5941): 725–730. doi: 10.1126/science.1174251

    17. [17]

      KIM Y J, LEE C, LEE J G, et al. Configurational design of mechanical perturbation for fine control of twisted dna origami structures[J]. ACS Nano, 2019, 13(6): 6348–6355. doi: 10.1021/acsnano.9b01561

    18. [18]

      HAN Dongran, PAL S, NANGREAVE J, et al. DNA origami with complex curvatures in three-dimensional space[J]. Science, 2011, 332(6027): 342–346. doi: 10.1126/science.1202998

    19. [19]

      LIN Zhiwei, XIONG Yan, XIANG Shuting, et al. Controllable covalent-bound nanoarchitectures from DNA frames[J]. Journal of the American Chemical Society, 2019, 141(17): 6797–6801. doi: 10.1021/jacs.9b01510

    20. [20]

      ZHANG Tao, HARTL C, FRANK K, et al. 3D DNA origami crystals[J]. Advanced Materials, 2018, 30(28): 1800273. doi: 10.1002/adma.201800273

    21. [21]

      HAN Dongran, PAL S, YANG Yang, et al. DNA gridiron nanostructures based on four-arm junctions[J]. Science, 2013, 339(6126): 1412–1415. doi: 10.1126/science.1232252

    22. [22]

      KE Yonggang, ONG L L, SUN Wei, et al. DNA brick crystals with prescribed depths[J]. Nature Chemistry, 2014, 6(11): 994–1002. doi: 10.1038/nchem.2083

    23. [23]

      WANG Wen, CHEN Silian, AN B, et al. Complex wireframe DNA nanostructures from simple building blocks[J]. Nature Communications, 2019, 10(1): 1067. doi: 10.1038/s41467-019-08647-7

    24. [24]

      STOJANOVIC M N, MITCHELL T E, and STEFANOVIC D. Deoxyribozyme-based logic gates[J]. Journal of the American Chemical Society, 2002, 124(14): 3555–3561. doi: 10.1021/ja016756v

    25. [25]

      STOJANOVIC M N and STEFANOVIC D. Deoxyribozyme-based half-adder[J]. Journal of the American Chemical Society, 2003, 125(22): 6673–6676. doi: 10.1021/ja0296632

    26. [26]

      PENCHOVSKY R and BREAKER R R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes[J]. Nature Biotechnology, 2005, 23(11): 1424–1433. doi: 10.1038/nbt1155

    27. [27]

      CHEN Xi, WANG Yifei, LIU Qiang, et al. Construction of molecular logic gates with a DNA-cleaving deoxyribozyme[J]. Angewandte Chemie, 2006, 118(11): 1791–1794. doi: 10.1002/ange.200502511

    28. [28]

      SEELIG G, SOLOVEICHIK D, ZHANG D Y, et al. Enzyme-free nucleic acid logic circuits[J]. Science, 2006, 314(5805): 1585–1588. doi: 10.1126/science.1132493

    29. [29]

      QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729

    30. [30]

      LI Wei, YANG Yang, YAN Hao, et al. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J]. Nano Letters, 2013, 13(6): 2980–2988. doi: 10.1021/nl4016107

    31. [31]

      PROKUP A, HEMPHILL J, and DEITERS A. DNA computation: A photochemically controlled and gate[J]. Journal of the American Chemical Society, 2012, 134(8): 3810–3815. doi: 10.1021/ja210050s

    32. [32]

      HEMPHILL J and DEITERS A. DNA computation in mammalian cells: MicroRNA logic operations[J]. Journal of the American Chemical Society, 2013, 135(28): 10512–10518. doi: 10.1021/ja404350s

    33. [33]

      MORIHIRO K, ANKENBRUCK N, LUKASAK B, et al. Small molecule release and activation through DNA computing[J]. Journal of the American Chemical Society, 2017, 139(39): 13909–13915. doi: 10.1021/jacs.7b07831

    34. [34]

      PENG Ruizi, ZHENG Xiaofang, LYU Yifan, et al. Engineering a 3D DNA-logic gate nanomachine for bispecific recognition and computing on target cell surfaces[J]. Journal of the American Chemical Society, 2018, 140(31): 9793–9796. doi: 10.1021/jacs.8b04319

    35. [35]

      SONG Tingjie and LIANG Haojun. Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine[J]. Journal of the American Chemical Society, 2012, 134(26): 10803–10806. doi: 10.1021/ja304746k

    36. [36]

      YANG Jing, SHEN Lingjing, MA Jingjing, et al. Fluorescent nanoparticle beacon for logic gate operation regulated by strand displacement[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5392–5396. doi: 10.1021/am401493d

    37. [37]

      NIKITIN M P, SHIPUNOVA V O, DEYEV S M, et al. Biocomputing based on particle disassembly[J]. Nature Nanotechnology, 2014, 9(9): 716–722. doi: 10.1038/nnano.2014.156

    38. [38]

      PHILLIPS A and CARDELLI L. A programming language for composable DNA circuits[J]. Journal of the Royal Society Interface, 2009, 6(Suppl 4): S419–S436. doi: 10.1098/rsif.2009.0072.focus

    39. [39]

      LAKIN M R, YOUSSEF S, POLO F, et al. Visual DSD: A design and analysis tool for DNA strand displacement systems[J]. Bioinformatics, 2011, 27(22): 3211–3213. doi: 10.1093/bioinformatics/btr543

    40. [40]

      GEORGE A K and SINGH H. DNA strand displacement-based logic inverter gate design[J]. Micro & Nano Letters, 2017, 12(9): 611–614. doi: 10.1049/mnl.2017.0142

    41. [41]

      NIU YING, SHEN CHAONAN, and ZHANG XUNCAI. Design of logic circuits based on metallo-toehold strand displacement[J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(2): 232–237. doi: 10.1166/jno.2019.2480

    42. [42]

      CHERRY K M and QIAN Lulu. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks[J]. Nature, 2018, 559(7714): 370–376. doi: 10.1038/s41586-018-0289-6

    43. [43]

      ANDERSEN E S, DONG Mingdong, NIELSEN M M, et al. Self-assembly of a nanoscale DNA box with a controllable lid[J]. Nature, 2009, 459(7243): 73–76. doi: 10.1038/nature07971

    44. [44]

      DOUGLAS S M, BACHELET I, and CHURCH G M. A logic-gated nanorobot for targeted transport of molecular payloads[J]. Science, 2012, 335(6070): 831–834. doi: 10.1126/science.1214081

    45. [45]

      AMIR Y, BEN-ISHAY E, LEVNER D, et al. Universal computing by DNA origami robots in a living animal[J]. Nature Nanotechnology, 2014, 9(5): 353–357. doi: 10.1038/nnano.2014.58

    46. [46]

      WANG Dongfang, FU Yanming, YAN Juan, et al. Molecular logic gates on DNA origami nanostructures for microRNA diagnostics[J]. Analytical Chemistry, 2014, 86(4): 1932–1936. doi: 10.1021/ac403661z

    47. [47]

      ZHANG Cheng, YANG Jing, JIANG Shuoxing, et al. DNAzyme-based logic gate-mediated DNA self-assembly[J]. Nano Letters, 2016, 16(1): 736–741. doi: 10.1021/acs.nanolett.5b04608

    48. [48]

      STOJANOVIC M N and STEFANOVIC D. A deoxyribozyme-based molecular automaton[J]. Nature Biotechnology, 2003, 21(9): 1069–1074. doi: 10.1038/nbt862

    49. [49]

      MACDONALD J, LI Yang, SUTOVIC M, et al. Medium scale integration of molecular logic gates in an automaton[J]. Nano Letters, 2006, 6(11): 2598–2603. doi: 10.1021/nl0620684

    50. [50]

      PEI Renjun, MATAMOROS E, LIU Manhong, et al. Training a molecular automaton to play a game[J]. Nature Nanotechnology, 2010, 5(11): 773–777. doi: 10.1038/nnano.2010.194

    51. [51]

      SONG Tianqi, GARG S, MOKHTAR R, et al. Analog computation by DNA strand displacement circuits[J]. ACS Synthetic Biology, 2016, 5(8): 898–912. doi: 10.1021/acssynbio.6b00144

    52. [52]

      QIAN Lulu and WINFREE E. Scaling up digital circuit computation with DNA strand displacement cascades[J]. Science, 2011, 332(6034): 1196–1201. doi: 10.1126/science.1200520

    53. [53]

      SONG Tianqi, ESHRA A, SHAH S, et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase[J]. Nature Nanotechnology, 2019, 14(11): 1075–1081. doi: 10.1038/s41565-019-0544-5

    54. [54]

      QIAN Lulu, WINFREE E, and BRUCK J. Neural network computation with DNA strand displacement cascades[J]. Nature, 2011, 475(7356): 368–372. doi: 10.1038/nature10262

    55. [55]

      BUI H, SHAH S, MOKHTAR R, et al. Localized DNA hybridization chain reactions on DNA origami[J]. ACS Nano, 2018, 12(2): 1146–1155. doi: 10.1021/acsnano.7b06699

    56. [56]

      LIU Huajie, WANG Jianbang, SONG Shiping, et al. A DNA-based system for selecting and displaying the combined result of two input variables[J]. Nature Communications, 2015, 6: 10089. doi: 10.1038/ncomms10089

    57. [57]

      CHATTERJEE G, DALCHAU N, MUSCAT R A, et al. A spatially localized architecture for fast and modular DNA computing[J]. Nature Nanotechnology, 2017, 12(9): 920–927. doi: 10.1038/nnano.2017.127

    58. [58]

      BOEMO M A, LUCAS A E, TURBERFIELD A J, et al. The formal language and design principles of autonomous DNA walker circuits[J]. ACS Synthetic Biology, 2016, 5(8): 878–884. doi: 10.1021/acssynbio.5b00275

    59. [59]

      SHERMAN W B and SEEMAN N C. A precisely controlled DNA biped walking device[J]. Nano Letters, 2004, 4(7): 1203–1207. doi: 10.1021/nl049527q

    60. [60]

      YIN Peng, YAN Hao, DANIELL X G, et al. A unidirectional DNA walker that moves autonomously along a track[J]. Angewandte Chemie: International Edition, 2004, 43(37): 4906–4911. doi: 10.1002/anie.200460522

    61. [61]

      BATH J, GREEN S J, and TURBERFIELD A J. A free-running DNA motor powered by a nicking enzyme[J]. Angewandte Chemie: International Edition, 2005, 44(28): 4358–4361. doi: 10.1002/anie.200501262

    62. [62]

      LUND K, MANZO A J, DABBY N, et al. Molecular robots guided by prescriptive landscapes[J]. Nature, 2010, 465(7295): 206–210. doi: 10.1038/nature09012

    63. [63]

      WICKHAM S F J, BATH J, KATSUDA Y, et al. A DNA-based molecular motor that can navigate a network of tracks[J]. Nature Nanotechnology, 2012, 7(3): 169–173. doi: 10.1038/nnano.2011.253

    64. [64]

      GU Hongzhou, CHAO Jie, XIAO Shoujun, et al. A proximity-based programmable DNA nanoscale assembly line[J]. Nature, 2010, 465(7295): 202–205. doi: 10.1038/nature09026

    65. [65]

      JUNG C, ALLEN P B, and ELLINGTON A D. A stochastic DNA walker that traverses a microparticle surface[J]. Nature Nanotechnology, 2016, 11(2): 157–163. doi: 10.1038/nnano.2015.246

    66. [66]

      THUBAGERE A J, LI Wei, JOHNSON R F, et al. A cargo-sorting DNA robot[J]. Science, 2017, 357(6356): eaan6558. doi: 10.1126/science.aan6558

    67. [67]

      CHAO Jie, WANG Jianbang, WANG Fei, et al. Solving mazes with single-molecule DNA navigators[J]. Nature Materials, 2019, 18(3): 273–279. doi: 10.1038/s41563-018-0205-3

    68. [68]

      DIRKS R M and PIERCE N A. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275–15278. doi: 10.1073/pnas.0407024101

    69. [69]

      SCHULMAN R, YURKE B, and WINFREE E. Robust self-replication of combinatorial information via crystal growth and scission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6405–6410. doi: 10.1073/pnas.1117813109

    70. [70]

      WOODS D, DOTY D, MYHRVOLD C, et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly[J]. Nature, 2019, 572(7771): E21. doi: 10.1038/s41586-019-1378-x

    71. [71]

      JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829

    72. [72]

      CURRIN A, KOROVIN K, ABABI M, et al. Computing exponentially faster: Implementing a non-deterministic universal turing machine using DNA[J]. Journal of the Royal Society Interface, 2017, 14(128): 20160990. doi: 10.1098/rsif.2016.0990

    1. [1]

      殷志祥, 唐震, 张强, 崔建中, 杨静, 王日晟, 赵寿为, 张居丽. 基于DNA折纸基底的与非门计算模型. 电子与信息学报, 2020, 42(6): 1355-1364.

    2. [2]

      张凯, 陈彬, 许志伟. 基于多目标进化策略算法的DNA核酸编码设计. 电子与信息学报, 2020, 42(6): 1365-1373.

    3. [3]

      孙军伟, 李智, 王延峰. 基于DNA链置换的三级联组合分子逻辑电路设计. 电子与信息学报, 2020, 42(6): 1401-1409.

    4. [4]

      柳娟, 谢文彬, 汪改英, 汤敏丽. 基于DNA和限制性核酸内切酶的基本逻辑门设计. 电子与信息学报, 2020, 42(6): 1332-1339.

    5. [5]

      毛秀海, 李凡, 左小磊. DNA数据存储. 电子与信息学报, 2020, 42(6): 1303-1312.

    6. [6]

      许鹏, 方刚, 石晓龙, 刘文斌. DNA存储及其研究进展. 电子与信息学报, 2020, 42(6): 1326-1331.

    7. [7]

      牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法. 电子与信息学报, 2020, 42(6): 1383-1391.

    8. [8]

      董亚非, 胡文晓, 钱梦瑶, 王越. 基于DNA适配体的荧光生物传感器. 电子与信息学报, 2020, 42(6): 1374-1382.

    9. [9]

      王延峰, 张桢桢, 王盼如, 孙军伟. 基于DNA链置换的两位格雷码减法器分子电路设计. 电子与信息学报, 2020, 42(0): 1-9.

    10. [10]

      陈容, 陈岚, WAHLAArfan Haider. 基于公式递推法的可变计算位宽的循环冗余校验设计与实现. 电子与信息学报, 2020, 42(5): 1261-1267.

    11. [11]

      唐伦, 肖娇, 魏延南, 赵国繁, 陈前斌. 基于云雾混合计算的车联网联合资源分配算法. 电子与信息学报, 2020, 42(0): 1-8.

    12. [12]

      夏士超, 姚枝秀, 鲜永菊, 李云. 移动边缘计算中分布式异构任务卸载算法. 电子与信息学报, 2020, 41(0): 1-8.

    13. [13]

      张海波, 程妍, 刘开健, 贺晓帆. 车联网中整合移动边缘计算与内容分发网络的移动性管理策略. 电子与信息学报, 2020, 42(6): 1444-1451.

    14. [14]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    15. [15]

      王璐慧, 王越, 钱梦瑶, 董亚非. 基于氧化石墨烯与金属离子的逻辑模型设计与可控性验证. 电子与信息学报, 2020, 42(6): 1410-1419.

    16. [16]

      李伟, 高嘉浩, 杜怡然, 陈韬. 一种密码专用可编程逻辑阵列的分组密码能效模型及其映射算法. 电子与信息学报, 2020, 41(0): 1-9.

    17. [17]

      刘通, 唐伦, 何小强, 陈前斌. 融合区块链与雾计算系统中基于网络时延和资源管理的优化任务卸载方案. 电子与信息学报, 2020, 42(0): 1-6.

    18. [18]

      李佩丽, 徐海霞. 区块链用户匿名与可追踪技术. 电子与信息学报, 2020, 42(5): 1061-1067.

    19. [19]

      徐建峰, 张方韬, 徐震, 王利明. 基于嗅探技术的字段操纵攻击研究. 电子与信息学报, 2020, 42(0): 1-8.

    20. [20]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

  • 图 1  DNA纳米结构

    图 2  基于DNA酶的DNA逻辑门

    图 3  DNA链置换反应原理

    图 4  基于链置换反应的DNA逻辑门

    图 5  以DNA折纸为模板的DNA逻辑门

    图 6  溶液中的DNA计算机

    图 7  以DNA折纸为模板的DNA计算

    图 8  智能DNA分子机器

  • 加载中
图(8)
计量
  • PDF下载量:  39
  • 文章访问数:  1325
  • HTML全文浏览量:  966
文章相关
  • 通讯作者:  晁洁, iamjchao@njupt.edu.cn
  • 收稿日期:  2019-10-28
  • 录用日期:  2020-02-25
  • 网络出版日期:  2020-04-07
  • 刊出日期:  2020-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章