高级搜索

基于Stackelberg博弈的虚拟化无线传感网络资源分配策略

王汝言 李宏娟 吴大鹏

引用本文: 王汝言, 李宏娟, 吴大鹏. 基于Stackelberg博弈的虚拟化无线传感网络资源分配策略[J]. 电子与信息学报, 2019, 41(2): 377-384. doi: 10.11999/JEIT180277 shu
Citation:  Ruyan WANG, Hongjuan LI, Dapeng WU. Stackelberg Game-based Resource Allocation Strategy in Virtualized Wireless Sensor Network[J]. Journal of Electronics and Information Technology, 2019, 41(2): 377-384. doi: 10.11999/JEIT180277 shu

基于Stackelberg博弈的虚拟化无线传感网络资源分配策略

    作者简介: 王汝言: 男,1969年生,教授,博士,研究方向为泛在网络、多媒体信息处理等;
    李宏娟: 女,1993年生,硕士生,研究方向为虚拟化、无线传感网络;
    吴大鹏: 男,1979年生,教授,博士,研究方向为泛在无线网络、无线网络服务质量控制等
    通讯作者: 李宏娟,ilihj@foxmail.com
  • 基金项目: 国家自然科学基金(61771082),重庆市高校创新团队建设计划资助项目(CXTDX201601020)

摘要: 虚拟化技术可有效缓解当前无线传感网络(WSN)中资源利用率较低、服务不灵活的问题。针对虚拟化WSN中的资源竞争问题,该文提出一种基于Stackelberg博弈的多任务资源分配策略。依据所承载业务的不同服务质量(QoS)需求,量化多个虚拟传感网络请求(VSNRs)的重要程度,进而,利用分布式迭代方法,获取WSN的最优价格策略和VSNRs的最优资源需求量,最后,根据纳什均衡所确定的最优价格、最优资源分配量,对多个VSNRs分配资源。仿真结果表明,所提策略不仅能满足用户的多样化需求,而且提升了节点和链路资源利用率。

English

    1. [1]

      EZDIANI S, ACHARYYA I S, SIVAKUMAR S, et al. Wireless sensor network softwarization: Towards WSN adaptive QoS[J]. IEEE Internet of Things Journal, 2017, 4(5): 1517–1527. doi: 10.1109/JIOT.2017.2740423

    2. [2]

      LIAO Yizheng, MOLLINEAUX M, HSU R, et al. SnowFort: An open source wireless sensor network for data analytics in infrastructure and environmental monitoring[J]. IEEE Sensors Journal, 2014, 14(12): 4253–4263. doi: 10.1109/JSEN.2014.2358253

    3. [3]

      HU Xiaoya, YANG Liuqing, and XIONG Wei. A novel wireless sensor network frame for urban transportation[J]. IEEE Internet of Things Journal, 2015, 2(6): 586–595. doi: 10.1109/JIOT.2015.2475639

    4. [4]

      ALAIAD A and ZHOU Lina. Patients’ adoption of WSN-Based smart home healthcare systems: an integrated model of facilitators and barriers[J]. IEEE Transactions on Professional Communication, 2017, 60(1): 4–23. doi: 10.1109/TPC.2016.2632822

    5. [5]

      PARK P, MARCO P D, and JOHANSSON K H. Cross-layer optimization for industrial control applications using wireless sensor and actuator mesh networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3250–3259. doi: 10.1109/TIE.2016.2631530

    6. [6]

      KHAN I, BELQASMI F, GLITHO R, et al. Wireless sensor network virtualization: Early architecture research perspectives[J]. IEEE Network, 2015, 29(3): 104–112. doi: 10.1109/MNET.2015.7113233

    7. [7]

      KHAN I, BELQASMI F, GLITHO R, et al. Wireless sensor network virtualization: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 553–576. doi: 10.1109/COMST.2015.2412971

    8. [8]

      GUO Lei, NING Zhaolong, SONG Qingyang, et al. A QoS-oriented high-efficiency resource allocation scheme in wireless multimedia sensor networks[J]. IEEE Sensors Journal, 2017, 17(5): 1538–1548. doi: 10.1109/JSEN.2016.2645709

    9. [9]

      DELGADO C, BOUSNINA S, CESANA M, et al. On optimal resource allocation in virtual sensor networks[J]. Ad Hoc Networks, 2016, 50(C): 23–40. doi: 10.1016/j.adhoc.2016.04.004

    10. [10]

      DELGADO C, CANALES M, ORTIN J, et al. Joint application admission control and network slicing in virtual sensor networks[J]. IEEE Internet of Things Journal, 2017, 5(1): 28–43. doi: 10.1109/JIOT.2017.2769446

    11. [11]

      OBELE B O, IFTIKHAR M, MANIPORNSUT S, et al. Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON[J]. Journal of Optical Communication and Network, 2009, 1(4): 259–273. doi: 10.1364/JOCN.1.000259

    12. [12]

      MILAN G, JUAN E S, and JAMETT M. A simple estimator of the Hurst exponent for self-similar traffic flows[J]. IEEE Latin America Transactions, 2015, 12(8): 1349–1354. doi: 10.1109/TLA.2014.7014500

    13. [13]

      TRAN T D and LE L B. Stackelberg game approach for wireless virtualization design in wireless networks[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.

    14. [14]

      WANG Cong, WANG Cuirong, and YUAN Ying. Game based dynamical bandwidth allocation model for virtual networks[C]. 2009 First International Conference on Information Science and Engineering, Nanjing, China, 2009: 1745–1747.

    15. [15]

      LUONG N C, HOANG D T, WANG Ping, et al. Data collection and wireless communication in Internet of Things (IoT) using economic analysis and pricing models: A survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2546–2590. doi: 10.1109/COMST.2016.2582841

    16. [16]

      AL-ZAHRANI A Y and YU F R. An energy-efficient resource allocation and interference management scheme in green heterogeneous networks using game theory[J]. IEEE Transactions on Vehicular Technology, 2016, 65(7): 5384–5396. doi: 10.1109/TVT.2015.2464322

    17. [17]

      XU Qichao, SU Zhou, and GUO Song. A game theoretical incentive scheme for relay selection services in mobile social networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6692–6702. doi: 10.1109/TVT.2015.2472289

    18. [18]

      GHOSH A, COTTATELLUCCI L, and ALTMAN E. Normalized Nash equilibrium for power allocation in cognitive radio Networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2015, 1(1): 86–99. doi: 10.1109/TCCN.2015.2496578

    19. [19]

      RAO M S S and SOMAN S A. Marginal pricing of transmission services using min-max fairness policy[J]. IEEE Transactions on Power Systems, 2015, 30(2): 573–584. doi: 10.1109/TPWRS.2014.2331424

    20. [20]

      ZHANG Yueyue, ZHU Yaping, YAN Feng, et al. Energy-efficient radio resource allocation in software-defined wireless sensor networks[J]. IET Communications, 2018, 12(3): 349–358. doi: 10.1049/iet-com.2017.0937

    1. [1]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    2. [2]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    3. [3]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报, 2020, 42(0): 1-8.

    4. [4]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报, 2020, 41(0): 1-9.

  • 图 1  虚拟化无线传感网络示意图

    图 2  虚拟化前后节点缓存资源利用率

    图 3  虚拟化前后链路带宽资源利用率

    图 4  不同a值时VSNSP效用函数在迭代过程中的变化

    图 5  WSNInP与VSNSPs间的纳什均衡

    图 6  不同任务数产生的收益

    图 7  不同任务数的带宽利用率

    表 1  仿真参数设置

    参数设定参考数值
    仿真区域(m2)50×50
    节点数量(个)55
    节点处理速度(bit/s)16~32
    节点存储能力(kb)4~15
    节点能量(J)2~4
    链路带宽(kb/s)5~30
    用户体验常量1或2
    VSNR资源需求策略调节步长0.1
    WSN价格策略调节步长0.1
    最大迭代次数/次200
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  93
  • 文章访问数:  832
  • HTML全文浏览量:  418
文章相关
  • 通讯作者:  李宏娟, ilihj@foxmail.com
  • 收稿日期:  2018-03-23
  • 录用日期:  2018-07-25
  • 网络出版日期:  2018-08-06
  • 刊出日期:  2019-02-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章