高级搜索

基于自适应波段聚类主成分分析和反向传播神经网络的高光谱图像压缩

陈善学 张燕琪

引用本文: 陈善学, 张燕琪. 基于自适应波段聚类主成分分析和反向传播神经网络的高光谱图像压缩[J]. 电子与信息学报, 2018, 40(10): 2478-2483. doi: 10.11999/JEIT180055 shu
Citation:  Shanxue CHEN, Yanqi ZHANG. Hyperspectral Image Compression Based on Adaptive Band Clustering Principal Component Analysis and Back Propagation Neural Network[J]. Journal of Electronics and Information Technology, 2018, 40(10): 2478-2483. doi: 10.11999/JEIT180055 shu

基于自适应波段聚类主成分分析和反向传播神经网络的高光谱图像压缩

    作者简介: 陈善学: 男,1966年生,教授,研究方向为图像处理、数据压缩;
    张燕琪: 女,1992年生,硕士生,研究方向为高光谱图像压缩
    通讯作者: 张燕琪,752910311@qq.com
  • 基金项目: 国家自然科学基金(61271260),重庆市教委科学技术研究项目(KJ1400416)

摘要: 高光谱遥感图像具有丰富的光谱信息,数据量大。为了能够有效地利用高光谱图像数据,促进高光谱遥感技术的发展,该文提出一种基于自适应波段聚类主成分分析(PCA)与反向传播(BP)神经网络相结合的高光谱图像压缩算法。算法利用近邻传播(AP)聚类算法对波段进行自适应聚类,对聚类后的各个分组分别进行PCA运算,最后利用BP神经网络对所有主成分进行编码压缩。该文的创新点在于BP神经网络压缩图像时,在训练步骤过程中,误差反向传播是用原图与输出作差值,再反向调整各层的权值、阈值。对高光谱图像进行波段聚类,不仅能够有效地利用谱间相关性,提高压缩性能,还可以降低PCA的运算量。实验结果表明,该文算法与其它现有算法比较,在相同压缩比下,其光谱角更小,信噪比更高。

English

    1. [1]

      BIOUCA-DIAS J, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J].IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36 doi: 10.1109/MGRS.2013.2244672

    2. [2]

      SHEN Hongda, PAN W D, WU Dongsheng, et al. Fast Golomb coding parameter estimation using partial data and its application in hyperspectral image compression[C]. Southeastcon, Norfolk, USA, 2016: 1–7.

    3. [3]

      FU Wei, LI Shutao, FANG Leyuan, et al. Adaptive spectral–spatial compression of hyperspectral image with sparse representation[J]. IEEE Transactions on Geoscience&Remote Sensing, 2017, 55(2): 671–682 doi: 10.1109/TGRS.2016.2613848

    4. [4]

      LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17–28 doi: 10.1109/79.974718

    5. [5]

      陈善学, 韩勇, 于佳佳, 等. 矢量维数分割量化的高光谱图像压缩方法[J]. 系统工程与电子技术, 2013, 35(9): 1989–1993 doi: 10.3969/j.issn.1001-506x.2013.09.31
      CHEN Shanxue, HAN Yong, YU Jiajia, et al. Compression algorithm of hyperspectral image based on vector dimension segmentation quantization[J]. Journal of Systems Engineering and Electronics, 2013, 35(9): 1989–1993 doi: 10.3969/j.issn.1001-506x.2013.09.31

    6. [6]

      KARAMI A, YAZDI M, and MERCIER G. Compression of hyperspectral images using discrete wavelet transform and tucker decomposition[J]. IEEE Journal on Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 444–450 doi: 10.1109/JSTARS.2012.2189200

    7. [7]

      MIELIKAINEN J and HUANG B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1118–1121 doi: 10.1109/LGRS.2012.2191531

    8. [8]

      ZHU Shiping and ZONG Xianzi. Fractal lossy hyperspectral image coding algorithm based on prediction[J]. IEEE Access, 2017, 5: 21250–21257 doi: 10.1109/ACESS.2017.2755681

    9. [9]

      SHEN Hongda, PAN W D, and WU Dongsheng. Predictive lossless compression of regions of interest in hyperspectral images with no-data regions[J]. IEEE Transactions on Geoscience&Remote Sensing, 2016, 55(1): 173–182 doi: 10.1109/TGRS.2016.2603527

    10. [10]

      WEN Jia, MA Caiwen, and ZHAO Junsuo. FIVQ algorithm for interference hyper-spectral image compression[J].Optics Communications, 2014, 322(8): 97–104 doi: 10.1016/j.optcom.2014.02.016

    11. [11]

      韩力群. 人工神经网络理论、设计及应用[M]. 第2版, 北京: 化学工业出版社, 2007: 第3章.
      HAN Liqun. Artificial Neural Network Theory, Design and Application[M]. Second Edition, Beijing: Chemical Press, 2007: Chapter three.

    12. [12]

      吴倩, 张荣, 徐大卫. 基于稀疏表示的高光谱数据压缩算法[J]. 电子与信息学报, 2015, 37(1): 78–84 doi: 10.11999/JEIT140214
      WU Qian, ZHANG Rong, and XU Dawei. Hyperspectral data compression based on sparse representation[J]. Journal of Electronica&Information Technology, 2015, 37(1): 78–84 doi: 10.11999/JEIT140214

    13. [13]

      高放, 孙长建, 邵庆龙, 等. 基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩[J]. 电子与信息学报, 2016, 38(11): 2709–2714 doi: 10.11999/JEIT151439
      GAO Fang, SUN Changjian, SHAO Qinglong, et al. Lossless compression of hyperspectral image using K-means clustering and conventional recursive least-squares predictor[J]. Journal of Electronica&Information Technology, 2016, 38(11): 2709–2714 doi: 10.11999/JEIT151439

    14. [14]

      FOWLER J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230–2242 doi: 10.1109/TIP.2009.2025089

    15. [15]

      WEI Jia. Application of hybrid back propagation neural network in image compression[C]. International Conference on Intelligent Computation Technology and Automation, Nanchang, China, 2016: 209–212.

    16. [16]

      闫红梅, 吴冬梅. 改进BP网络在超光谱图像压缩中的应用[J]. 图学学报, 2013, 34(5): 110–114 doi: 10.3969/j.issn.2095-302X.2013.05.022
      YAN Hongmei and WU Dongmei. Application of improved BP neural network in hyperspectral image compression[J]. Journal of Engineering Graphics, 2013, 34(5): 110–114 doi: 10.3969/j.issn.2095-302X.2013.05.022

    1. [1]

      江小平, 王妙羽, 丁昊, 李成华. 基于信道状态信息幅值-相位的被动式室内指纹定位. 电子与信息学报, 2020, 42(5): 1165-1171.

    2. [2]

      张天骐, 范聪聪, 葛宛营, 张天. 基于ICA和特征提取的MIMO信号调制识别算法. 电子与信息学报, 2020, 41(0): 1-8.

    3. [3]

      柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法. 电子与信息学报, 2020, 42(0): 1-8.

    4. [4]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    5. [5]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    6. [6]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报, 2020, 42(5): 1102-1109.

    7. [7]

      刘小燕, 李照明, 段嘉旭, 项天远. 基于卷积神经网络的PCB板色环电阻检测与定位方法. 电子与信息学报, 2020, 41(0): 1-10.

    8. [8]

      邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配. 电子与信息学报, 2020, 41(0): 1-8.

    9. [9]

      申铉京, 沈哲, 黄永平, 王玉. 基于非局部操作的深度卷积神经网络车位占用检测算法. 电子与信息学报, 2020, 41(0): 1-8.

    10. [10]

      张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移. 电子与信息学报, 2020, 42(5): 1216-1222.

    11. [11]

      雷大江, 张策, 李智星, 吴渝. 基于多流融合生成对抗网络的遥感图像融合方法. 电子与信息学报, 2020, 41(0): 1-8.

    12. [12]

      王刚, 靳彦青, 彭华, 张光伟. Lempel-Ziv-Welch压缩数据的误码纠正. 电子与信息学报, 2020, 42(6): 1436-1443.

    13. [13]

      兰红, 方治屿. 零样本图像识别. 电子与信息学报, 2020, 42(5): 1188-1200.

    14. [14]

      刘政怡, 刘俊雷, 赵鹏. 基于样本选择的RGBD图像协同显著目标检测. 电子与信息学报, 2020, 42(0): 1-8.

    15. [15]

      陈华, 习伟, 范丽敏, 焦志鹏, 冯婧怡. 密码产品的侧信道分析与评估. 电子与信息学报, 2020, 42(0): 1-10.

    16. [16]

      牛莹, 张勋才. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法. 电子与信息学报, 2020, 42(6): 1383-1391.

    17. [17]

      刘文斌, 王兵, 方刚, 石晓龙, 许鹏. 基于中值的JS散度可变剪接差异分析研究. 电子与信息学报, 2020, 42(6): 1392-1400.

    18. [18]

      许鹏, 王兵, 方刚, 石晓龙, 刘文斌. 基于可变剪接紊乱的乳腺癌亚型预测分析. 电子与信息学报, 2020, 42(6): 1348-1354.

    19. [19]

      贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-9.

    20. [20]

      佟鑫, 李莹, 陈岚. SVM算法在硬件木马旁路分析检测中的应用. 电子与信息学报, 2020, 42(7): 1643-1651.

  • 图 1  BP神经网络

    图 2  算法整体流程图

    图 3  率失真性能比较

    表 1  Cuprite波段聚类分组结果

    分组号 1 2 3 4 5 6
    各组波段划分 1~17 18~32 33~60 61~74 75~96 97~117
    组内相关性 0.9738 0.9998 0.9998 0.9948 0.9997 0.9902
    分组号 7 8 9 10 11 12
    各组波段划分 118~145 146~161 162~177 178~191 192~202 203~224
    组内相关性 0.9961 0.9963 0.9963 0.9925 0.9828 0.8134
    不分组时波段间相关性 0.7759
    下载: 导出CSV

    表 2  Jasper Ridge波段聚类分组结果

    分组号 1 2 3 4
    各组波段划分 1~24 25~36 37~105 106~113
    组内相关性 0.9679 0.9662 0.9663 0.9662
    分组号 5 6 7 8
    各组波段划分 114~121 122~153 154~166 167~224
    组内相关性 0.9665 0.9663 0.9663 0.9664
    不分组时波段间相关性 0.6939
    下载: 导出CSV

    表 3  Lunar Lake波段聚类分组结果

    分组号 1 2 3 4 5
    各组波段划分 1~19 20~39 40~70 71~107 108~111
    组内相关性 0.9704 0.9993 0.9993 0.9972 0.5797
    分组号 6 7 8 9 10
    各组波段划分 112~155 156~166 167~206 207~221 222~224
    组内相关性 0.9742 0.4823 0.9934 0.9868 0.8380
    不分组时波段间相关性 0.6413
    下载: 导出CSV

    表 4  光谱角对比

    比特率(bit/s) Cuprite Jasper Ridge Lunar Lake
    本文算法 文献[12]算法 3D-SPIHT 本文算法 文献[12]算法 3D-SPIHT 本文算法 文献[12]算法 3D-SPIHT
    0.1 0.4842 0.5922 18.4829 1.5030 4.0054 43.8099 0.5151 0.6494 4.7773
    0.2 0.3898 0.5179 6.2616 1.4196 3.1861 24.8005 0.4620 0.5847 1.1188
    0.4 0.2820 0.4531 1.8106 1.3757 2.8051 8.2692 0.3331 0.5217 0.8408
    0.7 0.2697 0.3956 0.7953 1.2893 2.4240 3.3733 0.3325 0.4599 0.4622
    下载: 导出CSV
  • 加载中
图(3)表(4)
计量
  • PDF下载量:  30
  • 文章访问数:  391
  • HTML全文浏览量:  151
文章相关
  • 通讯作者:  张燕琪, 752910311@qq.com
  • 收稿日期:  2018-01-16
  • 录用日期:  2018-05-24
  • 网络出版日期:  2018-07-30
  • 刊出日期:  2018-10-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章