高级搜索

车辆网络多平台卸载智能资源分配算法

王汝言 梁颖杰 崔亚平

引用本文: 王汝言, 梁颖杰, 崔亚平. 车辆网络多平台卸载智能资源分配算法[J]. 电子与信息学报, 2020, 42(1): 263-270. doi: 10.11999/JEIT190074 shu
Citation:  Ruyan WANG, Yingjie LIANG, Yaping CUI. Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks[J]. Journal of Electronics and Information Technology, 2020, 42(1): 263-270. doi: 10.11999/JEIT190074 shu

车辆网络多平台卸载智能资源分配算法

    作者简介: 王汝言: 男,1969年生,教授,主要研究方向为泛在网络、多媒体信息处理等;
    梁颖杰: 女,1994年生,硕士生,研究方向为车联网、移动边缘计算;
    崔亚平: 男,1986年生,讲师,研究方向为毫米波通信、多天线技术、车联网等
    通讯作者: 梁颖杰,liangyj10111@163.com
  • 基金项目: 国家自然科学基金(61801065, 61771082, 61871062),重庆市高校创新团队建设计划(CXTDX201601020)

摘要: 为了降低计算任务的时延和系统的成本,移动边缘计算(MEC)被用于车辆网络,以进一步改善车辆服务。该文在考虑计算资源的情况下对车辆网络时延问题进行研究,提出一种多平台卸载智能资源分配算法,对计算资源进行分配,以提高下一代车辆网络的性能。该算法首先使用K临近(KNN)算法对计算任务的卸载平台(云计算、移动边缘计算、本地计算)进行选择,然后在考虑非本地计算资源分配和系统复杂性的情况下,使用强化学习方法,以有效解决使用移动边缘计算的车辆网络中的资源分配问题。仿真结果表明,与任务全部卸载到本地或MEC服务器等基准算法相比,提出的多平台卸载智能资源分配算法实现了时延成本的显著降低,平均可节省系统总成本达80%。

English

    1. [1]

      WU Dapeng, ZHANG Feng, WANG Honggang, et al. Security-oriented opportunistic data forwarding in mobile social networks[J]. Future Generation Computer Systems, 2018, 87: 803–815. doi: 10.1016/j.future.2017.07.028

    2. [2]

      LUO Changqing, JI Jinlong, WANG Qianlong, et al. Channel state information prediction for 5G wireless communications: A deep learning approach[J]. IEEE Transactions on Network Science and Engineering, 2018. doi: 10.1109/TNSE.2018.2848960

    3. [3]

      HUSSAIN R, SON J, EUN H, et al. Rethinking vehicular communications: Merging VANET with cloud computing[C]. The 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, Taipei, China, 2013: 606–609. doi: 10.1109/CloudCom.2012.6427481.

    4. [4]

      LI Chunhai, WANG Siming, HUANG Xumin, et al. Parked vehicular computing for energy-efficient Internet of vehicles: A contract theoretic approach[J]. IEEE Internet of Things Journal, 2019, 6(4): 6079–6088. doi: 10.1109/JIOT.2018.2869892

    5. [5]

      ZHANG Ke, MAO Yuming, LENG Supeng, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997360.

    6. [6]

      ASHRAF M I, LIU Chenfeng, BENNIS M, et al. Dynamic resource allocation for optimized latency and reliability in vehicular networks[J]. IEEE Access, 2018, 6: 63843–63858. doi: 10.1109/ACCESS.2018.2876548

    7. [7]

      ZHANG Ke, MAO Yuming, LENG Supeng, et al. Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks[J]. Mobile Networks and Applications, 2019, 24(3): 1003–1014. doi: 10.1007/s11036-018-1032-0

    8. [8]

      DING Qing, SUN Bo, and ZHNAG Xinming. A traffic-light-aware routing protocol based on street connectivity for urban vehicular Ad Hoc networks[J]. IEEE Communications Letters, 2016, 20(8): 1635–1638. doi: 10.1109/LCOMM.2016.2574708

    9. [9]

      ZHANG Ke, MAO Yuming, LENG Supeng, et al. Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading[J]. IEEE Vehicular Technology Magazine, 2017, 12(2): 36–44. doi: 10.1109/MVT.2017.2668838

    10. [10]

      HAN Guangjie, LIU Li, CHAN S, et al. HySense: A hybrid mobile Crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint[J]. IEEE Communications Magazine, 2017, 55(3): 93–99. doi: 10.1109/MCOM.2017.1600658CM

    11. [11]

      SOOKHAK M, YU F R, HE Ying, et al. Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 55–64. doi: 10.1109/MVT.2017.2667499

    12. [12]

      LI Ji, GAO Hui, LÜ Tiejun, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377343.

    13. [13]

      HE Ying, ZHAO Nan, and YIN Hongxi. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44–55. doi: 10.1109/TVT.2017.2760281

    14. [14]

      LIN Chuncheng, DENG D J, and YAO C C. Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units[J]. IEEE Internet of Things Journal, 2018, 5(5): 3692–3700. doi: 10.1109/JIOT.2017.2690961

    15. [15]

      MAO Yuyi, YOU Changsheng, ZHNAG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201

    16. [16]

      ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017, 5: 11255–11268. doi: 10.1109/ACCESS.2017.2710056

    17. [17]

      ZHANG Ke, MAO Yuming, LENG Supeng, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896–5907. doi: 10.1109/ACCESS.2016.2597169

    1. [1]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    2. [2]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    3. [3]

      向敏, 饶华阳, 张进进, 陈梦鑫. 基于GCN的软件定义电力通信网络路由控制策略. 电子与信息学报, 2020, 42(0): 1-8.

    4. [4]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报, 2020, 41(0): 1-9.

  • 图 1  网络模型

    图 2  总成本与距离关系图

    图 3  总成本与车辆数关系图

    图 4  总成本与车辆数及本地计算能力关系图

    图 5  总成本与任务数据大小关系图

     算法1 多平台卸载智能资源分配算法
     阶段1:初始化
        (1) 任务${R_i}$的最大延迟${\tau _{{R_i}}}$,任务大小${B_{{R_i}}}$;
        (2) 任务的当前位置$P = 1$;
        (3) ${{Q}}$矩阵,参数$\gamma $,奖赏矩阵${{R}}$;
        (4) 本地(l)、移动边缘计算(m)、云计算(c),各平台平 均延迟${\tau _1},{\tau _2},{\tau _3}$,允许最大任务大小${B_1},{B_2},{B_3}$。
     阶段2:选择任务卸载位置
       计算(${\tau _{{R_i}}},{B_{{R_i}}}$)和(${\tau _1},{B_1}$)的欧式距离$D$
       $D = \sqrt {{{({\tau _{{R_i}}} - {\tau _1})}^2} + {{({B_{{R_i}}} - {B_1})}^2}} ,P = 1$
       for j=2, 3 do
        计算(${\tau _{{R_i}}},{B_{{R_i}}}$)和(${\tau _j},{B_j}$)的欧式距离${d_j}$
        if ${d_j} < D$ then
         $D = {d_j},P = j$
        end if
       end for
       if P=1
        任务卸载到本地
        if P=2 or 3
        进行阶段3。
     阶段3:资源分配
      if P=3 then
       在云计算服务器中计算任务${R_i}$
     end if
     if P=2 then
       for 每次迭代 do
        随机选择一个状态${s_t}$
      for 每一步 do
        从状态${s_t}$的可能动作中随机选择动作$a$
        执行动作$a$,计算奖励$r$,进入下一状态$s'$
        计算
        $q(s,a) \leftarrow r(s,a) + \gamma \cdot \max [q(s',a')]$
        更新状态$s \leftarrow s'$
        until ${{Q}}$矩阵稳定
       end for
      end for
     end if
    下载: 导出CSV
  • 加载中
图(5)表(1)
计量
  • PDF下载量:  71
  • 文章访问数:  1216
  • HTML全文浏览量:  721
文章相关
  • 通讯作者:  梁颖杰, liangyj10111@163.com
  • 收稿日期:  2019-01-25
  • 录用日期:  2019-07-16
  • 网络出版日期:  2019-09-20
  • 刊出日期:  2020-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章