高级搜索

雷达间歇辐射对测向交叉定位性能的影响分析

王亚涛 曾小东 周龙建

引用本文: 王亚涛, 曾小东, 周龙建. 雷达间歇辐射对测向交叉定位性能的影响分析[J]. 电子与信息学报, 2020, 42(2): 452-457. doi: 10.11999/JEIT190110 shu
Citation:  Yatao WANG, Xiaodong ZENG, Longjian ZHOU. Analysis for Effect of Radar Intermittent Radiation on the Performance of Cross Location[J]. Journal of Electronics and Information Technology, 2020, 42(2): 452-457. doi: 10.11999/JEIT190110 shu

雷达间歇辐射对测向交叉定位性能的影响分析

    作者简介: 王亚涛: 男,1981年生,硕士,高级工程师,研究方向为电子侦察、射频隐身;
    曾小东: 男,1985年生,硕士,工程师,研究方向为信号处理、射频隐身;
    周龙建: 男,1988年生,博士,工程师,研究方向为计算电磁学、雷达隐身、射频隐身
    通讯作者: 王亚涛,76566628@qq.com
摘要: 针对雷达采取间歇辐射的射频隐身管控措施,以双站测向交叉定位为例,该文研究了辐射时间比与定位性能的影响关系。首先分析了雷达间歇辐射的管控方法,然后在载机做匀速直线运动的假设下,采用克拉美罗下界(CRLB)方法,建立了辐射时间比对定位精度的影响模型。最后给出了模型的求解步骤并进行了仿真验证。仿真结果表明,不同辐射时间比对定位性能的影响不同,在初始距离为100 km,辐射时间比小于0.5时,定位收敛时间超过10 s,可以有效降低测向交叉定位的性能。

English

    1. [1]

      PARIKH A, KAMALAPURKAR R, and DIXON W E. Target tracking in the presence of intermittent measurements via motion model learning[J]. IEEE Transactions on Robotics, 2018, 34(3): 805–819. doi: 10.1109/TRO.2018.2821169

    2. [2]

      YADAV R, DAHIYA P K, and MISHRA R. Comparative analysis of automotive radar sensor for collision detection and warning system[J]. International Journal of Information Technology, 2018(12): 1–6. doi: 10.1007/s41870-018-0167-3

    3. [3]

      吴巍, 柳毅, 王国宏, 等. 辐射限制下有源无源协同跟踪技术[J]. 信息与控制, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418
      WU Wei, LIU Yi, WANG Guohong, et al. Active and passive synergy tracking technique with emission constraint[J]. Information and Control, 2011, 40(3): 418–423. doi: 10.3724/SP.J.1219.2011.00418

    4. [4]

      吴巍, 王国宏, 李世忠. 雷达间歇辅助下雷达红外协同跟踪技术[J]. 火力与指挥控制, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040
      WU Wei, WANG Guohong, and LI Shizhong. Research on radar and IRST synergistic tracking with radar intermittent assistant[J]. Fire Control &Command Control, 2012, 37(1): 155–158. doi: 10.3969/j.issn.1002-0640.2012.01.040

    5. [5]

      熊久良, 徐宏, 韩壮志, 等. 基于组网的火控雷达间歇式目标跟踪技术研究[J]. 现代雷达, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004
      XIONG Jiuliang, XU Hong, HAN Zhuangzhi, et al. A study on intermittent target tracking technology in fire-control radar network[J]. Modern Radar, 2011, 33(8): 13–16. doi: 10.3969/j.issn.1004-7859.2011.08.004

    6. [6]

      ZHANG Zhenkai, ZHOU Jianjiang, WANG Fei, et al. Multiple-target tracking with adaptive sampling intervals for phased-array radar[J]. Journal of Systems Engineering and Electronics, 2011, 22(5): 760–766. doi: 10.3969/j.issn.1004-4132.2011.05.006

    7. [7]

      ZHANG Zhenkai, ZHU Jiehao, TIAN Yubo, et al. Novel sensor selection strategy for LPI based on an improved IMMPF tracking method[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1004–1010. doi: 10.1109/jsee.2014.00115

    8. [8]

      BENOUDNINE H, KECHE M, OUAMRI A, et al. New efficient schemes for adaptive selection of the update time in the IMMJPDAF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 197–214. doi: 10.1109/taes.2012.6129630

    9. [9]

      刘学全, 李波, 万开方, 等. 基于多传感器协同的雷达猝发技术研究[J]. 中国民航大学学报, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005
      LIU Xuequan, LI Bo, WAN Kaifang, et al. Study on radar burst technology based on multi-sensor synergy[J]. Journal of Civil Aviation University of China, 2012, 30(6): 17–20. doi: 10.3969/j.issn.1674-5590.2012.06.005

    10. [10]

      ZHOU Biao, SUN Chao, AHN D, et al. A novel passive tracking scheme exploiting geometric and intercept theorems[J]. Sensors, 2018, 18(3): 895. doi: 10.3390/s18030895

    11. [11]

      张国凯, 何佳洲, 戴霄. 基于椭球模型的雷达/ESM联合定位算法[J]. 指挥控制与仿真, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007
      ZHANG Guokai, HE Jiazhou, and DAI Xiao. Radar/ESM locating algorithm based on the ellipsoid model of globe[J]. Command Control &Simulation, 2013, 35(5): 30–33. doi: 10.3969/j.issn.1673-3819.2013.05.007

    12. [12]

      NARYKOV A S and YAROVOY A. Sensor selection algorithm for optimal management of the tracking capability in multisensor radar system[C]. 2013 European Microwave Conference, Nuremberg, Germany, 2013: 1811–1814.

    13. [13]

      吴卫华, 江晶, 高岚. 机载雷达辅助无源传感器对杂波环境下机动目标跟踪[J]. 控制与决策, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781
      WU Weihua, JIANG Jing, and GAO Lan. Tracking maneuvering target in clutter with passive sensor aided by airborne radar[J]. Control and Decision, 2015, 30(2): 277–282. doi: 10.13195/j.kzyjc.2013.1781

    14. [14]

      YANG Chao, ZHENG Jiangying, REN Xiaoqiang, et al. Multi-sensor Kalman filtering with intermittent measurements[J]. IEEE Transactions on Automatic Control, 2018, 63(3): 797–804. doi: 10.1109/TAC.2017.2734643

    15. [15]

      HUANG He and WANG Wenqin. FDA-OFDM for integrated navigation, sensing, and communication systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6): 34–42. doi: 10.1109/MAES.2018.170109

    16. [16]

      汪晗, 成昂轩, 王坤, 等. 无线传感器网络分布式迭代定位误差控制算法[J]. 电子与信息学报, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344
      WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344

    17. [17]

      孙仲康, 周一宇, 何黎星. 单多基地有源无源定位技术[M]. 北京: 国防工业出版社, 1996: 291–294.
      SUN Zhongkang, ZHOU Yiyu, and HE Lixing. Active and Passive Location Technology by Single and Multiple Platforms[M]. Beijing: National Defense Industry Press, 1996: 291–294.

    18. [18]

      张保群. 辐射时序对单站无源跟踪性能的影响[J]. 电讯技术, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007
      ZHANG Baoqun. Effect of radiation time sequence on passive tracking with single observation platform[J]. Telecommunication Engineering, 2015, 55(7): 746–752. doi: 10.3969/j.issn.1001-893x.2015.07.007

    1. [1]

      宋广南, 卢海梁, 李浩, 李一楠, 郎量, 董思乔, 李鹏飞, 吕容川. 复杂天气及海风对天基被动干涉微波辐射无源探测系统性能的影响. 电子与信息学报, 2020, 42(0): 1-8.

    2. [2]

      江小平, 王妙羽, 丁昊, 李成华. 基于信道状态信息幅值-相位的被动式室内指纹定位. 电子与信息学报, 2020, 42(5): 1165-1171.

    3. [3]

      刘坤, 吴建新, 甄杰, 王彤. 基于阵列天线和稀疏贝叶斯学习的室内定位方法. 电子与信息学报, 2020, 42(5): 1158-1164.

    4. [4]

      刘小燕, 李照明, 段嘉旭, 项天远. 基于卷积神经网络的PCB板色环电阻检测与定位方法. 电子与信息学报, 2020, 41(0): 1-10.

  • 图 1  间歇辐射特征变化情形

    图 2  观测站、目标的位置关系

    图 3  仿真场景

    图 4  不同时隙宽度对定位误差影响

    图 5  不同时隙重复周期对定位误差影响

    图 6  不同初始距离对定位误差影响

    表 1  仿真参数

    参数取值
    有效辐射功率110 dBm
    发射频率8 GHz
    波束宽度2.2°×2.2°
    副瓣电平–25 dB
    初始距离100 km,70 km
    载机飞行速度300 m/s
    侦察飞机飞行速度300 m/s
    基线长度30 km
    测向精度0.5°
    导航精度50 m
    采样周期100 ms
    下载: 导出CSV

    表 2  不同辐射时间比对收敛时间的影响(s)

    辐射时间比$\beta $初始距离100 km初始距离70 km
    1.002.10.9
    0.902.21.0
    0.803.31.5
    0.753.81.6
    0.667.42.8
    0.5012.26.2
    0.3319.010.9
    0.2525.314.5
    0.2031.618.1
    0.1046.527.3
    下载: 导出CSV

    表 3  不同辐射时间比及时隙重复周期下的收敛时间(s)

    $\tau /T$(%)T(s)
    0.51234
    1003.23.23.23.23.2
    804.14.14.13.94.2
    506.87.16.56.65.4
    4010.19.38.67.28.8
    3020.529.224.515.813.0
    2051.550.148.340.844.7
    下载: 导出CSV
  • 加载中
图(6)表(3)
计量
  • PDF下载量:  27
  • 文章访问数:  985
  • HTML全文浏览量:  579
文章相关
  • 通讯作者:  王亚涛, 76566628@qq.com
  • 收稿日期:  2019-02-26
  • 录用日期:  2019-08-30
  • 网络出版日期:  2019-09-04
  • 刊出日期:  2020-02-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章