高级搜索

面向业务的弹性光网络光路损伤感知能效路由策略

刘焕淋 方菲 黄俊 陈勇 向敏 马跃

引用本文: 刘焕淋, 方菲, 黄俊, 陈勇, 向敏, 马跃. 面向业务的弹性光网络光路损伤感知能效路由策略[J]. 电子与信息学报, 2019, 41(5): 1202-1209. doi: 10.11999/JEIT180580 shu
Citation:  Huanlin LIU, Fei FANG, Jun HUANG, Yong CHEN, Min XIANG, Yue MA. Energy Efficiency Routing Strategy with Lightpath Impairment Awareness in Service-Oriented Elastic Optical Networks[J]. Journal of Electronics and Information Technology, 2019, 41(5): 1202-1209. doi: 10.11999/JEIT180580 shu

面向业务的弹性光网络光路损伤感知能效路由策略

    作者简介: 刘焕淋: 女,1970年生,教授,研究方向为光通信技术与未来网络;
    方菲: 女,1995年生,硕士生,研究方向为光网络能效节点与调度算法;
    黄俊: 男,1992年生,硕士生,研究方向为光网络QoS保证与节能;
    陈勇: 男,1963年生,教授,研究方向为光通信技术、传感检测与自动化技术;
    向敏: 男,1974年生,教授,研究方向为智能电网,工业物联网;
    马跃: 男,1977年生,高级工程师,研究方向为电力通信
    通讯作者: 刘焕淋,liuhl2@sina.com
  • 基金项目: 国家电网公司科技项目(52010118000Q)

摘要: 针对弹性光网络中物理损伤导致业务频谱利用率低和传输能耗高问题,该文提出一种面向业务的链路损伤感知频谱分区(LI-ASP)能效路由策略。在LI-ASP策略中,为降低不同信道间非线性损伤,基于负载均衡设计一个综合考虑链路频谱状态和传输损伤的路径权重公式,根据调制方式的频谱效率和最大传输距离构造分层辅助图,从最高调制等级开始,为高质量业务选择K条边分离的最大权重传输路径;为低质量业务选择K条边分离的最短能效路径。然后,LI-ASP策略根据业务速率比值对频谱分区,采用首次命中(FF)和尾端命中(LF)联合频谱分配方式,减少不同传输速率业务间的交叉相位调制。仿真结果表明,该文所提LI-ASP策略在有效降低带宽阻塞率的同时,减少了业务传输能耗。

English

    1. [1]

      熊余, 刘川菠, 孙鹏. 考虑业务服务质量的光线路终端节能算法[J]. 重庆邮电大学学报, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011
      XIONG Yu, LIU Chuanbo, and SUN Peng. Energy saving algorithm for optical line terminal considering quality of service[J]. Journal of Chongqing University of Posts and Telecommunications, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011

    2. [2]

      刘焕淋, 熊翠连, 陈勇. 频谱效率优先的任播路由冲突感知的弹性光网络资源重配置[J]. 电子与信息学报, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093
      LIU Huanlin, XIONG Cuilian, and CHEN Yong. Collision-aware reconfiguration resource based on spectrum efficiency first for anycast routing in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093

    3. [3]

      LIU Huanlin, LÜ Lei, CHEN Yong, et al. Fragmentation-avoiding spectrum assignment strategy based on spectrum partition for elastic optical networks[J]. IEEE Photonics Journal, 2017, 9(5): 1–13. doi: 10.1109/JPHOT.2017.2739750

    4. [4]

      鲍宁海, 刘翔, 张治中, 等. WDM节能光网络中的抗毁保护算法研究[J]. 重庆邮电大学学报, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2015.03.002
      BAO Ninghai, LIU Xiang, ZHANG Zhizhong, et al. Survival protection algorithm in WDM energy-efficient optical network[J]. Journal of Chongqing University of Posts and Telecommunications, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2015.03.002

    5. [5]

      TAN Yanxia, GU Rentao, and JI Yuefeng. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks[J]. Optical Fiber Technology, 2017, 36(2017): 297–305. doi: 10.1016/j.yofte.2017.05.001

    6. [6]

      YANG Song and KUIPERS F. Impairment-aware routing in translucent spectrum-sliced elastic optical path networks[C]. European Conference on Networks and Optical Communications, Vilanova, Spain, 2012: 1–6. doi: 10.1109/NOC.2012.6249946.

    7. [7]

      AGRELL E, ZHAO Juzi, LI Yan, et al. Traffic-grooming-and multipath-routing-enabled impairment-aware elastic optical networks[J]. Journal of Optical Communications and Networking, 2016, 8(2): 58–70. doi: 10.1364/JOCN.8.000058

    8. [8]

      ZHAO Juzi, WYMEERSCH H, and AGRELL E. Nonlinear impairment-aware static resource allocation in elastic optical networks[J]. Journal of Lightwave Technology, 2015, 33(22): 4554–4564. doi: 10.1109/JLT.2015.2474130

    9. [9]

      REN Rongrong, HOU Weigang, GUO Lei, et al. Spectrum and energy-efficient survivable routing algorithm in elastic optical network[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(20): 8795–8806. doi: 10.1016/j.ijleo.2016.06.088

    10. [10]

      KLEKAMP A, DISCHLER R, and BUCHALI F. Transmission reach of optical-OFDM superchannels with 10-600 Gb/s for transparent bit-rate adaptive networks[C]. European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3. doi: 10.1364/ECOC.2011.Tu.3.K.2.

    11. [11]

      ZHAO Jijun, WANG Wenyan, LI Wei, et al. A novel partition-plane impairment aware routing and spectrum assignment algorithm in mixed line rates elastic optical networks[J]. Photonic Network Communications, 2017, 33(1): 1–8. doi: 10.1007/s11107-015-0601-4

    12. [12]

      ABKENAR F S, RAHBAR A G, EBRAHIMZADEH A. Providing Quality of Service (QoS) for data traffic in Elastic Optical Networks (EONs)[J]. Arabian Journal for Science and Engineering, 2016, 41(3): 1–10. doi: 10.1007/s13369-015-1886-4

    13. [13]

      GUO Lei, WU Ying, HOU Weigang, et al. Green grooming in spectrum-sliced elastic optical path networks[J]. Photonic Network Communications, 2016, 32(1): 115–125. doi: 10.1007/s11107-015-0580-5

    14. [14]

      LIU Huanlin, ZHOU Bangtao, and CHEN Yong. Spectrum allocation based on spectrum integration and re-routing for elastic optical networks[J]. IET Optoelectronics, 2016, 10(5): 179–183. doi: 10.1049/iet-opt.2015.0136

    15. [15]

      TANAKA T, INUI T, KADOHATA A, et al. Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation[J]. Journal of Optical Communications and Networking, 2016, 8(7): A180–A190. doi: 10.1364/JOCN.8.00A180

    1. [1]

      于存谦, 张黎, 何荣希. 弹性光网络基于区分降级服务和自适应调制的动态路由与频谱分配算法. 电子与信息学报, 2019, 41(1): 38-45.

    2. [2]

      史久根, 徐皓, 张径, 王继. 软件定义网络中基于效率区间的负载均衡在线优化算法. 电子与信息学报, 2019, 41(3): 694-701.

    3. [3]

      史久根, 谢熠君, 孙立, 郭胜, 刘雅丽. 软件定义网络中面向时延和负载的多控制器放置策略. 电子与信息学报, 2019, 41(8): 1869-1876.

    4. [4]

      刘焕淋, 方菲, 陈勇, 向敏, 马跃. 基于无色无向无冲突可重构光分插复用器节点的全光IP组播能效调度. 电子与信息学报, 2019, 41(0): 1-7.

    5. [5]

      刘焕淋, 林振宇, 王欣, 陈勇, 向敏, 马跃. 弹性光网络中基于安全性感知的差异化虚拟光网络的映射策略. 电子与信息学报, 2019, 41(2): 424-432.

    6. [6]

      王汝言, 徐宁宁, 吴大鹏. 能耗和时延感知的虚拟化云无线接入网络资源分配机制. 电子与信息学报, 2019, 41(1): 83-90.

    7. [7]

      戴紫彬, 尹安琪, 曲彤洲, 南龙梅. 面向众核密码处理器的高效负载均衡技术. 电子与信息学报, 2019, 41(2): 369-376.

    8. [8]

      唐伦, 杨恒, 马润琳, 陈前斌. 基于5G接入网络的多优先级虚拟网络功能迁移开销与网络能耗联合优化算法. 电子与信息学报, 2019, 41(9): 2079-2086.

    9. [9]

      赵杨, 尚朝轩, 韩壮志, 韩宁, 解辉. 分数阶傅里叶和压缩感知自适应抗频谱弥散干扰. 电子与信息学报, 2019, 41(5): 1047-1054.

    10. [10]

      罗钧, 刘泽伟, 张平, 刘学明, 柳政. 基于非线性因子的改进鸟群算法在动态能耗管理中的应用. 电子与信息学报, 2019, 41(0): 1-8.

    11. [11]

      杨凌, 赵膑, 陈亮, 李媛, 张国龙. 基于回声状态网络的卫星信道在线盲均衡算法. 电子与信息学报, 2019, 41(10): 2334-2341.

    12. [12]

      代美玲, 刘周斌, 郭少勇, 邵苏杰, 邱雪松. 基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制. 电子与信息学报, 2019, 41(0): 1-7.

    13. [13]

      熊余, 杨娅娅, 张振振, 蒋婧. 软件定义时分波分复用无源光网络中基于带宽预测的资源分配策略. 电子与信息学报, 2019, 41(8): 1885-1892.

    14. [14]

      曹成虎, 赵永波, 索之玲, 庞晓娇, 徐保庆. 基于频谱校正的中国余数定理多普勒频率估计算法. 电子与信息学报, 2019, 41(0): 1-8.

    15. [15]

      邹虹, 高毅爽, 闫俊杰. 带有卸载时延感知的边缘云增强FiWi网络节能机制. 电子与信息学报, 2019, 41(2): 394-401.

    16. [16]

      刘新波, 王布宏, 杨智显, 沈海鸥. 一种碎片感知的安全虚拟网络重构方法. 电子与信息学报, 2019, 41(4): 995-1001.

    17. [17]

      苏玉泽, 孟相如, 康巧燕, 韩晓阳. 核心链路感知的可生存虚拟网络链路保护方法. 电子与信息学报, 2019, 41(7): 1587-1593.

    18. [18]

      赵国生, 张慧, 王健. 基于Tangle网络的移动群智感知数据安全交付模型. 电子与信息学报, 2019, 41(0): 1-7.

    19. [19]

      陈树新, 洪磊, 吴昊, 刘卓崴, 岳龙华. 学生 t 混合势均衡多目标多伯努利滤波器. 电子与信息学报, 2019, 41(10): 2457-2463.

    20. [20]

      黄盛. 两用户非正交多址接入的最优时延均衡和功率控制方法. 电子与信息学报, 2019, 41(8): 1902-1908.

  • 图 1  调制等级分层辅助示意图

    图 2  仿真网络拓扑

    图 3  不同业务负载下各算法带宽阻塞率的对比

    图 4  4种算法在不同业务负载下高质量业务带宽阻塞率的对比

    图 5  4种算法在不同业务负载下低质量业务带宽阻塞率的对比

    图 6  4种算法在不同业务负载下频谱利用率的对比

    图 7  3种算法在不同业务负载下节能率的对比

    表 1  不同调制方式下子载波传输速率、能耗、最大传输距离及信噪比阈值

    调制方式调制等级m传输速率(Gb/s)能耗功率(W)最大传输距离(km)信噪比阈值(dB)
    BPSK 1 12.5 112.374 4000 6.8
    QPSK 2 25.0 133.416 2000 9.8
    8QAM 3 37.5 154.457 1000 13.7
    16QAM 4 50.0 175.489 500 16.5
    32QAM 5 62.5 196.539 250 19.7
    下载: 导出CSV

    表 2  LI-ASP能效路由策略步骤

     输入 光网络拓扑${{G}}\left( {{{V}}, {{E}}, {{S}}} \right)$,节点集${{V}} = \left\{ {{v_i}|i = 1, 2, ·\!·\!· , |{{V}}|} \right\}$,链路集${{E}} = \left\{ {{e_{ij}}|i, j \in {{V}}, i \ne j} \right\}$,链路频隙集${{S}} = \left\{ {{s_i}|i = 1, 2, ·\!·\!· , |{{S}}|} \right\}$,
    业务集${{R}} = \left\{ {{r_i}|i = 1, 2, ·\!·\!· , |{{R}}|} \right\}$表示,令$k = 1$,$m = M$,业务请求${r_i}\left( {s, d, {\rm{fs}}\_n, Q} \right)$,s为源节点,d为目的节点,${\rm{fs}}\_n$为业务请求
    频隙数目,Q=1表示高质量业务;Q=0为低质量业务。使用Dijkstra算法计算所有源目的节点间的K条最短路径KSP集合(预处理),
    M层调制等级辅助图(预处理)。
     输出 业务${r_i}$的传输路径${p_k}$和分配的第1个、最后频隙索引值${f_ {\rm{ts}}}$和${f_ {\rm{te}}}$。
     步骤 1 业务${r_i}\left( {s, d, {\rm{fs}}\_n, Q} \right)$到达,从频谱效率最高调制等级m=M分层辅助图开始为业务选择传输路径;
     步骤 2 判断Q是否为1,若为1,为高质量业务,算法转步骤3;否则,为低质量业务,转算法步骤4;
     步骤 3 根据式(8)计算源和目的节点间K条满足跳数阈值Hop的最大权重路径${{{P}}^H}\{{p_1}, {p_2}, ·\!·\!· , {p_K}\}$,转步骤5;
     步骤 4 根据业务源节点和目的节点选择存放在KSP中的K条最短路径,根据能耗模型计算路径能耗,按照能耗大小升序排列K条路径
    ${{{P}}^L}\{ {p_1}, {p_2}, ·\!·\!· , {p_K}\}$;
     步骤 5 计算当前调制等级下业务${r_i}$传输所需的频隙数目,从路径集合中选择第${p_k}$条路径,$k = 1, 2, ·\!·\!· , K$,计算该路径上可用频谱块Block
    $\{ {b_1}, {b_2}, ·\!·\!· , {b_j}\} $,若可用频谱块集合非空,转算法步骤8;否则转算法步骤6;
     步骤 6 若$m < 1$,当前传输路径无可用调制方式,转步骤7;否则降低调制等级,$m = m - 1$,转步骤2;
     步骤 7 若$k > K$,业务${r_i}$被阻塞,释放网络中已传输业务占用的频谱资源,更新光网络G的频谱资源;否则,$k = k + 1$,$m = M$,转算
    法步骤5;
     步骤 8 根据业务请求频隙数目${\rm{fs}}\_n$,分别计算采用FF和LF频谱分区分配策略需要占用候选路径上各链路相邻信道数目和的值,选择占
    用相邻信道数目和值较小的FF或LF频谱分配方式;
     步骤 9 根据物理损伤模型计算该路径上业务的传输误比特率${\rm{BER}}_{{r_i}}^k$,若${\rm{BER}}_{{r_i}}^k$小于业务误码率阈值,转算法步骤10;否则,$m = m - 1$,
    转算法步骤5;
     步骤 10 判断传输路径${p_k}$是否造成网络中其他正传输业务阻塞,若是,记录阻塞的业务BT$\{ {\rm{rb}}_1, {\rm{rb}}_2, ·\!·\!· , {\rm{rb}}_i\} $,调用LI-ASP能效路由策略重
    配置被阻塞的业务BT$\{ {\rm{rb}}_1, {\rm{rb}}_2, ·\!·\!· , {\rm{rb}}_i\} $;否则,转算法步骤12;
     步骤 11 若业务重配置成功,转算法步骤12;否则,$m = m - 1$,转算法步骤5;
     步骤 12 业务${r_i}$成功传输,记录传输路径${p_k}$,记录分配的第1个频隙索引值${f_ {\rm{ts}}}$和最后频隙索引值${f_ {\rm{te}}}$。
    下载: 导出CSV

    表 3  物理损伤参数设置

    参数 参数
    G(W/THz)0.015 L(km)80
    $\alpha $(dB/km)0.22v(THz)193
    nsp1.8${\beta _2}$(ps2/km)–21.7
    h(J/s)$6.626 \times {10^{ - 34}}$$\gamma $(W·km)–11.32
    ${\rm{BER}}_t^h$${10^{ - 12}}$${\rm{BER}}_t^l$${10^{ - 9}}$
    下载: 导出CSV
  • 加载中
图(7)表(3)
计量
  • PDF下载量:  29
  • 文章访问数:  505
  • HTML全文浏览量:  221
文章相关
  • 通讯作者:  刘焕淋, liuhl2@sina.com
  • 收稿日期:  2018-06-12
  • 录用日期:  2018-12-11
  • 网络出版日期:  2018-12-17
  • 刊出日期:  2019-05-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章