高级搜索

基于可调Q因子小波变换的识别左右手运动想象脑电模式研究

陈万忠 王晓旭 张涛

引用本文: 陈万忠, 王晓旭, 张涛. 基于可调Q因子小波变换的识别左右手运动想象脑电模式研究[J]. 电子与信息学报, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191 shu
Citation:  Wanzhong CHEN, Xiaoxu WANG, Tao ZHANG. Research of Discrimination Between Left and Right Hand Motor Imagery EEG Patterns Based on Tunable Q-Factor Wavelet Transform[J]. Journal of Electronics and Information Technology, 2019, 41(3): 530-536. doi: 10.11999/JEIT171191 shu

基于可调Q因子小波变换的识别左右手运动想象脑电模式研究

    作者简介: 陈万忠: 男,1963年生,教授,研究方向为生物信息感知和人机交互;
    王晓旭: 女,1993年生,硕士生,研究方向为信号处理和模式识别;
    张涛: 男,1991年生,博士生,研究方向为信号处理和模式识别
    通讯作者: 陈万忠,chenwz@jlu.edu.cn
  • 基金项目: 中央高校基本科研专项资金(451170301193),吉林省科技发展计划自然基金项目(20150101191JC),吉林省产业技术研发项目(2016C025)

摘要: 针对识别左右手运动想象脑电图信号(EEG)模式精度和互信息不高的问题,该文采用基于可调Q因子小波变换(TQWT)算法来处理脑电信号。首先,利用TQWT对脑电图信号进行分解;随后,提取子频带信号的小波系数能量、自回归模型(AR)系数以及分形维数;最后,利用线性判别分析(LDA)对提取的脑电特征进行识别。采用BCI2003和BCI2005竞赛数据对所提出的算法进行验证,4名受试者的最高识别率分别为88.11%, 89.33%, 77.13%和78.80%,最大互信息分别为0.95, 0.96, 0.43和0.45。实验结果表明,所提算法取得了高分类精度及互信息值,验证了其有效性。

English

    1. [1]

      佘青山, 陈希豪, 高发荣. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
      SHE Qingshan, CHEN Xihao, and GAO Farong. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851

    2. [2]

      BALCONI M and MAZZA G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band[J]. International Journal of Psychophysiology, 2009, 74(2): 158–165. doi: 10.1016/j.ijpsycho.2009.08.006

    3. [3]

      吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314–318.
      LV Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics &Information Technology, 2009, 31(2): 314–318.

    4. [4]

      陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209
      CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209

    5. [5]

      CHEN Minyou, FANG Yonghui, and ZHENG Xufei. Phase space reconstruction for improving the classification of single trial EEG[J]. Biomedical Signal Processing & Control, 2014, 11(1): 10–16. doi: 10.1016/j.bspc.2014.02.002

    6. [6]

      HAMID M and ZABIHOLLAH S M. Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization[J]. Biomedical Signal Processing & Control, 2017, 32: 69–75. doi: 10.1016/j.bspc.2016.10.015

    7. [7]

      PATTNAIK S, DASH M, and SABUT S K. DWT-based feature extraction and classification for motor imaginary EEG signals[C]. International Conference on Systems in Medicine and Biology, Kharagpur, India, 2016: 186–201.

    8. [8]

      徐佳琳, 左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法[J]. 生物医学工程学杂志, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036
      XU Jialin and ZUO Guokun. Motor imagery electroencephalogram feature selection algorithm based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201–207. doi: 10.7507/1001-5515.20160036

    9. [9]

      罗志增, 周镇定, 周瑛. 双树复小波特征在运动想象脑电识别中的应用[J]. 传感技术学报, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001
      LUO Zhizeng, ZHOU Zhending, and ZHOU Ying. The application of DTCWT feature in recognition of motor imagery[J]. Journal of Sensors and Actuators, 2014, 27(5): 575–580. doi: 10.3969/j.issn.1004-1699.2014.05.001

    10. [10]

      周瑛. 虚拟场景下运动想象脑电信号识别研究[D]. [硕士论文], 杭州电子科技大学, 2013.
      ZHOU Ying. The research of motor imagery recognition in virtual reality[D]. [Master dissertation], Hangzhou Dianzi University, 2013.

    11. [11]

      AL-QAZZAZ N K, HAMID B M A S, AHMAD S A, et al. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks[J]. Sensors, 2017, 17(6): 1–25. doi: 10.3390/s17061326

    12. [12]

      GHORBANIAN P, DEVILBISS D M, VERMA A, et al. Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform[J]. Annals of Biomedical Engineering, 2013, 41(6): 1243–1257. doi: 10.1007/s10439-013-0795-5

    13. [13]

      HASSAN A R and BHUIYAN M I H. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting[J]. Neurocomputing, 2017, 219: 76–87. doi: 10.1016/j.neucom.2016.09.011

    14. [14]

      BENJAMIN B. BCI Competition II[OL]. http://www.bbci.de/competition/ii/, 2003.

    15. [15]

      BENJAMIN B. BCI Competition III[OL]. http://www.bbci.de/competition/iii/, 2005.

    16. [16]

      VIDAURRE C, SCHLOGL A, CABEZA R, et al. A fully on-line adaptive BCI[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(6): 1214–1219. doi: 10.1109/TBME.2006.873542

    17. [17]

      BAYRAM I and SELESNICK I W. Frequency-domain design of overcomplete rational-dilation wavelet transforms[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 2957–2972. doi: 10.1109/TSP.2009.2020756

    18. [18]

      IVAN S. Tunable Q-factor wavelet transform[OL]. http://eeweb.poly.edu/iselesni/TQWT/index.html, 2016.

    19. [19]

      SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560–3575. doi: 10.1109/TSP.2011.2143711

    20. [20]

      AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139–149. doi: 10.1007/s13246-015-0333-x

    21. [21]

      LAWHERN V, HAIRSTON W D, MCDOWELL K, et al. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models[J]. Journal of Neuroscience Methods, 2012, 208(2): 181–189. doi: 10.1016/j.jneumeth.2012.05.017

    22. [22]

      PHOTHISONOTHAI M and NAKAGAWA M. EEG-based classification of motor imagery tasks using fractal dimension and neural network for brain-computer interface[J]. IEICE Transactions on Information and Systems, 2008, 91(1): 44–53. doi: 10.1093/ietisy/e91-d.1.44

    23. [23]

      訾艳阳, 胥永刚, 何正嘉. 离散振动信号分形盒维数的改进算法和应用[J]. 机械科学与技术, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021
      ZI Yanyang, XU Yonggang, and HE Zhengjia. Fractal box dimension of discrete vibration signals[J]. Mechanical Science and Technology for Aerospace Engineering, 2001(3): 373–376. doi: 10.3321/j.issn:1003-8728.2001.03.021

    24. [24]

      GUPTA S and SAINI H. EEG features extraction using PCA plus LDA approach based on L1-norm for motor imaginary classification[C]. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 2015: 1–5.

    25. [25]

      SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644.

    26. [26]

      FELE-ZORZ G, KAVSEK G, NOVAK-ANTOLIC Z, et al. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups[J]. Medical & Biological Engineering & Computing, 2008, 46(9): 911–922. doi: 10.1007/s11517-008-0350-y

    1. [1]

      陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法. 电子与信息学报, 2020, 42(5): 1297-1302.

    2. [2]

      刘新, 阎焜, 杨光耀, 叶盛波, 张群英, 方广有. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究. 电子与信息学报, 2020, 41(0): 1-8.

    3. [3]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    4. [4]

      李劲松, 彭建华, 刘树新, 季新生. 一种基于线性规划的有向网络链路预测方法. 电子与信息学报, 2020, 41(0): 1-9.

    5. [5]

      李骜, 刘鑫, 陈德运, 张英涛, 孙广路. 基于低秩表示的鲁棒判别特征子空间学习模型. 电子与信息学报, 2020, 42(5): 1223-1230.

    6. [6]

      陈华, 习伟, 范丽敏, 焦志鹏, 冯婧怡. 密码产品的侧信道分析与评估. 电子与信息学报, 2020, 42(0): 1-10.

    7. [7]

      刘文斌, 王兵, 方刚, 石晓龙, 许鹏. 基于中值的JS散度可变剪接差异分析研究. 电子与信息学报, 2020, 42(6): 1392-1400.

    8. [8]

      许鹏, 王兵, 方刚, 石晓龙, 刘文斌. 基于可变剪接紊乱的乳腺癌亚型预测分析. 电子与信息学报, 2020, 42(6): 1348-1354.

    9. [9]

      贺利芳, 吴雪霜, 张天骐. 正交多用户短参考差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-9.

    10. [10]

      佟鑫, 李莹, 陈岚. SVM算法在硬件木马旁路分析检测中的应用. 电子与信息学报, 2020, 42(7): 1643-1651.

    11. [11]

      贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析. 电子与信息学报, 2020, 42(0): 1-8.

    12. [12]

      马杰, 钟斌斌, 焦亚男. 基于极坐标正弦变换的Copy-move篡改检测. 电子与信息学报, 2020, 42(5): 1172-1178.

    13. [13]

      李根, 马彦恒, 侯建强, 徐公国. 基于子孔径Keystone变换的曲线轨迹大斜视SAR回波模拟. 电子与信息学报, 2020, 41(0): 1-8.

    14. [14]

      李根, 马彦恒, 侯建强, 徐公国. 基于Keystone变换和扰动重采样的机动平台大斜视SAR成像方法. 电子与信息学报, 2020, 42(0): 1-8.

    15. [15]

      晋守博, 魏章志, 李耀红. 基于大通讯时滞的2阶多智能体系统的一致性分析. 电子与信息学报, 2020, 42(0): 1-6.

    16. [16]

      张颖君, 陈恺, 鲍旭华. 一种基于程序执行时间量化分析的软件水印方法. 电子与信息学报, 2020, 41(0): 1-9.

  • 图 1  TQWT分解($J\,$=4)

    图 2  S2受试者3类特征的盒图

    图 3  特征组合后得到的识别率结果

    表 1  不同受试者采用单一特征和组合特征所得平均识别率及最高识别率

    受试者特征组合平均识别率(%)最高识别率(%)
    F181.7486.44
    F280.9585.66
    F367.9373.38
    S1F1+F286.1686.90
    F1+F384.7685.47
    F2+F385.0386.89
    F1+F2+F386.4588.11
    F184.2089.04
    F276.5281.06
    F355.8761.20
    S2F1+F287.8589.30
    F1+F387.6388.59
    F2+F380.2281.33
    F1+F2+F387.9689.33
    F166.0871.46
    F266.3068.93
    F355.1658.92
    S3F1+F275.6176.99
    F1+F371.4073.08
    F2+F371.4972.72
    F1+F2+F374.7077.13
    F173.2477.87
    F269.1074.60
    F352.3658.34
    S4F1+F277.6578.79
    F1+F376.1477.24
    F2+F374.0675.25
    F1+F2+F376.7378.80
    下载: 导出CSV

    表 2  本文方法与文献[5,6]得到的最高识别率

    受试者平均值(%)
    S1S2S3S4
    文献[5]90.7185.5373.1876.9581.59
    文献[6]90.7187.4278.8974.6382.91
    本文方法88.1189.3377.1378.8083.34
    下载: 导出CSV

    表 3  本文方法与BCI2003竞赛前3名获胜者、文献[5,6]方法最大互信息

    特征选择最大互信息
    (bit)
    最小错误识别率
    (%)
    BCI2003_1 st小波特征0.6110.71
    BCI2003_2 ndAR谱能量0.4615.71
    BCI2003_3 rdAAR参数模型0.4517.14
    文献[5]方法相空间特征0.639.29
    文献[6]方法小波特征0.819.29
    本文方法组合特征0.9511.89
    下载: 导出CSV

    表 4  不同受试者TQWT参数设置

    受试者QrJ
    S1132
    S2237
    S3132
    S4233
    下载: 导出CSV

    表 5  本文方法的时耗统计(s)

    TQWT过程能量特征AR系数特征分形维数特征分类总时间
    S10.00100.00120.00160.05590.01740.0771
    S20.00220.00100.00150.05360.01660.0749
    S30.00120.00100.00160.05330.01630.0734
    S40.00140.00150.00180.05470.01710.0765
    下载: 导出CSV
  • 加载中
图(3)表(5)
计量
  • PDF下载量:  31
  • 文章访问数:  1137
  • HTML全文浏览量:  269
文章相关
  • 通讯作者:  陈万忠, chenwz@jlu.edu.cn
  • 收稿日期:  2017-12-19
  • 录用日期:  2018-12-06
  • 网络出版日期:  2018-12-21
  • 刊出日期:  2019-03-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章