高级搜索

基于Golay互补序列的压缩感知稀疏信道估计算法

姚志强 李广龙 王仕果 游志宏

引用本文: 姚志强, 李广龙, 王仕果, 游志宏. 基于Golay互补序列的压缩感知稀疏信道估计算法[J]. 电子与信息学报, 2016, 38(2): 282-287. doi: 10.11999/JEIT150594 shu
Citation:  YAO Zhiqiang, LI Guanglong, WANG Shiguo, YOU Zhihong. Compressed Sensing Channel Estimation Algorithm Based on Deterministic Sensing with Golay Complementary Sequences[J]. Journal of Electronics and Information Technology, 2016, 38(2): 282-287. doi: 10.11999/JEIT150594 shu

基于Golay互补序列的压缩感知稀疏信道估计算法

摘要: 该文针对现有基于压缩感知的信道估计方法峰均功率比高、计算量大等问题,使用确定性格雷(Golay)序列作为训练序列对稀疏信道进行信道估计,在接收端实现了对信道冲激响应的估计,给出了估计模型和具体的算法推演,推导了该方法的峰均功率比,并与基于随机高斯序列的压缩感知信道估计方法的性能、峰均功率比和计算量进行了比较。仿真实验表明:格雷序列以及随机高斯序列两种序列都可以重构出稀疏信道非零抽头系数,但是格雷序列对稀疏信道冲激响应的确定性观测估计值的均方误差(MSE)和匹配度性能(Match Rate, MR)均优于随机高斯序列,计算量降低了许多,且在OFDM系统中峰均功率比大大降低。

English

    1. [1]

      叶新荣, 朱卫平, 张爱清, 等. OFDM系统双选择性慢衰落信道的压缩感知估计[J].电子与信息学报, 2015, 37(1): 169-174. doi: 10.11999/JEIT140247.

    2. [2]

      YE Xinrong, ZHU Weiping, ZHANG Aiqing, et al. Compressed sensing based on doubly-selective slow-fading channel estimation in OFDM systems[J]. Journal of Electronics Information Technology, 2015, 37(1): 169-174. doi: 10.11999/JEIT140247.

    3. [3]

      TAUBOCK G and HLAWATSCH F. A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots[C]. IEEE International Conference on Acoustics Speech and Signal Processing, Las Vegas, NV, 2008: 2885-2888.

    4. [4]

      DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    5. [5]

      TSAIG Y and DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549-571.

    6. [6]

      CANDES E and ROMBERG J. Robust signal recovery from incomplete observations[C]. IEEE International Conference on Image Processing, Atlanta, GA, 2006: 1281-1284.

    7. [7]

      CANDES E, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(3): 489-509.

    8. [8]

      CANDES E and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.

    9. [9]

      BAJWA W U, HAUPT J, RAZ G, et al. Compressed channel sensing[C]. CISS 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, 2008: 5-10.

    10. [10]

      COHEN K M, ATTIAS C, and FARBMAN B. Channel estimation in UWB channels using compressed sensing[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014: 1966-1970.

    11. [11]

      WANG Weidong, YANG Junan, and ZHANG Chun. A novel compressed sensing ultra-wideband channel estimation method based on non-convex optimization[J]. International Journal of Communication Systems, 2015, 28(3): 472-482.

    12. [12]

      SHAKERI Z, BAJWA W U, et al. Deterministic selection of pilot tones for compressive estimation of MIMO-OFDM channels[C]. 49th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 2015: 1-6.

    13. [13]

      KHOSRAVI M and MASHHADI S. Joint pilot power pattern design for compressive OFDM channel estimation[J]. IEEE Communications Letters, 2015, 19(1): 50-53.

    14. [14]

      CHEN Xin and FANG Yong. Compressed sensing based scattering channel estimation for OFDM system under the scenarios of High-speed Railway[C]. 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, 2014, 539-543.

    15. [15]

      谢志斌,薛同思,田雨波,等.一种稀疏增强的压缩感知MIMO-OFDM信道估计算法[J]. 电子与信息学报, 2013, 35(3): 665-670. doi: 10.3724/SP.J.1146.2012.00860.

    16. [16]

      XIE Zhibin, XUE Tongsi, TIAN Yubo, et al. A sparsity enhanced channel estimation algorithm based on compressed sensing in MIMO-OFDM systems[J]. Journal of Electronics Information Technology, 2013, 35(3): 665-670. doi: 10.3724/ SP.J.1146.2012.00860.

    17. [17]

      BAJWA W U, JARVIS H, SAYEED A M, et al. Compressed channel sensing: A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076.

    18. [18]

      JARVIS H, BAJWA W U, and RAZ G. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.

    19. [19]

      GUAN G, QUN W, and WEI P. Sparse multipath channel estimation using compressive sampling matching pursuit algorithm[C]. IEEE Vehicular Technology Society Asia Pacific Wireless Communication Symposium, Piscataway, 2010: 19-22.

    20. [20]

      LI K, GAN L, and LING C. Convolutional compressed sensing using deterministic sequences[J]. IEEE Transactions on Signal Processing, 2012, 61(3): 740-752.

    21. [21]

      EIWEN D, TAUBOCK G, HLAWATSCH F, et al. Multichannel channel group sparsity methods for compressive channel stimation in doubly selective multicarrier MIMO systems[OL]. http//arxiv.org/abs/1407.3474, 2014.

    22. [22]

      GOLAY M J E. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82-87.

    23. [23]

      GRAY R M. Toeplitz and cimulant matrices: A review[J]. Communication and Information Theoy, 2006, 2(3): 155-239.

    1. [1]

      解志斌, 薛同思, 田雨波, 邹维辰, 刘庆华, 马国华. 一种稀疏增强的压缩感知MIMO-OFDM信道估计算法. 电子与信息学报, 2013, 35(3): 665-670.

    2. [2]

      叶新荣, 朱卫平, 张爱清, 孟庆民. OFDM系统双选择性慢衰落信道的压缩感知估计. 电子与信息学报, 2015, 37(1): 169-174.

    3. [3]

      于华楠, 郭树旭. 基于压缩感知的超宽带信道估计方法的研究. 电子与信息学报, 2012, 34(6): 1452-1456.

    4. [4]

      张颖, 姚雨丰. 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法. 电子与信息学报, 2020, 42(2): 534-540.

    5. [5]

      刘英男, 蒋伟, 姚春光, 梁庆林. 基于理想自相关训练序列的双选信道估计方法. 电子与信息学报, 2008, 30(10): 2423-2426.

    6. [6]

      张凯, 于宏毅, 胡赟鹏, 沈智翔. 稀疏信道下基于稀疏贝叶斯学习的精简星座盲均衡算法. 电子与信息学报, 2016, 38(9): 2255-2260.

    7. [7]

      朱行涛, 刘郁林, 赵翔. 基于均值循环卷积特性的UWB信道盲估计算法. 电子与信息学报, 2008, 30(10): 2381-2383.

    8. [8]

      顾彬, 杨震, 胡海峰. 基于压缩感知信道能量观测的协作频谱感知算法. 电子与信息学报, 2012, 34(1): 14-19.

    9. [9]

      李德建, 周正, 李斌, 翟世俊. 超宽带信道建模中基于压缩感知的解卷积算法. 电子与信息学报, 2012, 34(3): 644-649.

    10. [10]

      杜晓林, 苏涛, 王旭, 朱文涛, 靳标, 张龙. 基于Golay互补序列空时编码的MIMO雷达波形设计. 电子与信息学报, 2014, 36(8): 1966-1971.

    11. [11]

      刘凯, 冯辉, 杨涛, 胡波. 上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法. 电子与信息学报, 2018, 40(1): 116-122.

    12. [12]

      秦文, 彭启琮. 利用ICI自消除改善OFDM系统时变信道估计与均衡的性能. 电子与信息学报, 2008, 30(9): 2189-2192.

    13. [13]

      张晴川, 束锋, 孙锦涛, 王东明. 基于分布式空频码的协作通信系统的信道估计及优化. 电子与信息学报, 2010, 32(11): 2565-2570.

    14. [14]

      赵知劲, 汪百川, 尚俊娜, 徐春云. 基于随机集模型的MIMO-OFDM信道估计算法. 电子与信息学报, 2011, 33(2): 489-493.

    15. [15]

      徐微, 赵加祥, 王东, 艾小溪. 一种基于多模板的超宽带信道估计算法. 电子与信息学报, 2010, 32(10): 2468-2472.

    16. [16]

      唐怀东, 朱敏, 武岩波. 一种水声通信Turbo均衡中的软迭代信道估计算法. 电子与信息学报, 2013, 35(3): 677-682.

    17. [17]

      马天鸣, 施玉松, 李凤荣, 王营冠. 一种低复杂度自适应信道估计方案. 电子与信息学报, 2012, 34(8): 1980-1985.

    18. [18]

      物理层超高频射频识别标签信号分离中的信道估计. 电子与信息学报, 2016, 38(1): 119-126.

    19. [19]

      万显荣, 程熠瑶, 易建新, 张勋. DTMB外辐射源雷达参考信号重构信道估计新方法. 电子与信息学报, 2017, 39(5): 1044-1050.

    20. [20]

      吴钊, 张彧, 姜龙, 宋健. 基于宽带突发单载波频域均衡传输的时域精细信道估计方法. 电子与信息学报, 2016, 38(5): 1166-1172.

  • 加载中
计量
  • PDF下载量:  603
  • 文章访问数:  414
  • HTML全文浏览量:  29
文章相关
  • 收稿日期:  2015-05-18
  • 录用日期:  2015-09-16
  • 刊出日期:  2016-02-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章