高级搜索

上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法

刘凯 冯辉 杨涛 胡波

引用本文: 刘凯, 冯辉, 杨涛, 胡波. 上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法[J]. 电子与信息学报, 2018, 40(1): 116-122. doi: 10.11999/JEIT170399 shu
Citation:  LIU Kai, FENG Hui, YANG Tao, HU Bo. Structured Sparse and Low Rank Channel Estimation in Uplink 3D-MIMO[J]. Journal of Electronics and Information Technology, 2018, 40(1): 116-122. doi: 10.11999/JEIT170399 shu

上行3D-MIMO中利用结构稀疏低秩特性的信道估计算法

摘要: 3维多输入多输出(3D-MIMO)系统能有效提升频谱效率,提高系统容量。但用户数和天线数的剧增,无法保证所有用户的导频都正交,给3D-MIMO信道估计带来估计精度下降和复杂度增加等问题。该文分析了上行3D-MIMO系统信道的结构稀疏特性和低秩特性,并基于这些特性提出一种信道估计算法,给出了算法的收敛性和复杂度。仿真结果表明估计算法能准确地恢复3D-MIMO的信道系数,并有较低的复杂度。

English

    1. [1]

      NAM Y H, NG B L, SAYANA K, et al. Full-Dimension MIMO (FD-MIMO) for next generation cellular technology [J]. IEEE Communications Magazine, 2013, 51(6): 172-179. doi: 10.1109/MCOM.2013.6525612.

    2. [2]

      MARZETTA T. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. doi: 10.1109/TWC.2010.092810.091092.

    3. [3]

      BAJWA W U, HAUPT J, SAYEED M S, et al. Compressed channel sensing: A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076. doi: 10.1109/ JPROC.2010.2042415.

    4. [4]

      TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. New York: Cambridge University Press, 2005: 290-328.

    5. [5]

      POUTANEN J, HANEDA K, SALMI J, et al. Significance of common scatters in multi-link indoor radio wave propagation [C]. Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), Barcelona, Spain, 2010: 1-5.

    6. [6]

      XIE Hongxiang, GAO Feifei, and JIN Shi. An overview of low-rank channel estimation for massive MIMO systems[J]. IEEE Access, 2016, 4: 7313-7321. doi: 10.1109/ACCESS. 2016.2623772.

    7. [7]

      BARBOTIN Y, HORMATI A, RANGAN S, et al. Estimation of sparse MIMO channels with common support [J]. IEEE Transactions on Communications, 2012, 60(12): 3705-3716. doi: 10.1109/TCOMM.2012.091112.110439.

    8. [8]

      NAN Yang, ZHANG Li, and SUN Xin. Efficient downlink channel estimation scheme based on block-structured compressive sensing for TDD massive MU-MIMO systems[J]. IEEE Wireless Communications Letters, 2015, 4(4): 345-348. doi: 10.1109/LWC.2015.2414933.

    9. [9]

      LIU Kai, FENG Hui, YANG Tao, et al. Structured sparse channel estimation for 3D-MIMO systems[C]. IEEE Vehicular Technology Conference (VTC), Nanjing, China, 2016: 1-6.

    10. [10]

      TSAI Chengrung, CHEN Chianghen, LIU Yuhsin, et al. Joint spatially sparse channel estimation for millimeter-wave cellular systems[C]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington D.C., USA, 2016: 605-609.

    11. [11]

      NGUYEN S L H and GHRAYEB A. Compressive sensing-based channel estimation for massive multiuser MIMO systems[C]. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013: 2890-2895.

    12. [12]

      FANG Jun, LI Xingjian, LI Hongbin, et al. Low-rank covariance-assisted downlink training and channel estimation for FDD massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1935-1947. doi: 10.1109/TWC.2017.2657513.

    13. [13]

      ZHU Yi, LIU Lingjia, and ZHANG Jianzhong. Joint angle and delay estimation for 2D active broadband MIMO-OFDM systems[C]. IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013: 3300-3305.

    14. [14]

      RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40-60. doi: 10.1109/ MSP.2011.2178495.

    15. [15]

      GAO Zhen, DAI Linglong, DAI Wei, et al. Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO[J]. IEEE Transactions on Communications, 2016, 64(2): 607-617. doi: 10.1109/ TCOMM.2015.2508809.

    16. [16]

      NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2008, 53(12): 93-100.

    17. [17]

      GOLUB G H and VAN LOAN C F. Matrix Computations [M]. Baltimore and London: Johns Hopkins University Press, 1996: 470-499.

    18. [18]

      WIPF D P and RAO B D. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. doi: 10.1109/TSP.2007. 894265.

    19. [19]

      COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172.

    20. [20]

      WU Xiaying, GU Lixin, WANG Wenjin, et al. Pilot design and AMP-based channel estimation for massive MIMO- OFDM uplink transmission[C]. IEEE Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1-7.

    1. [1]

      张颖, 姚雨丰. 基于快速贝叶斯匹配追踪优化的海上稀疏信道估计方法. 电子与信息学报, 2020, 42(2): 534-540.

    2. [2]

      解志斌, 薛同思, 田雨波, 邹维辰, 刘庆华, 马国华. 一种稀疏增强的压缩感知MIMO-OFDM信道估计算法. 电子与信息学报, 2013, 35(3): 665-670.

    3. [3]

      马天鸣, 施玉松, 李凤荣, 王营冠. 一种低复杂度自适应信道估计方案. 电子与信息学报, 2012, 34(8): 1980-1985.

    4. [4]

      姚志强, 李广龙, 王仕果, 游志宏. 基于Golay互补序列的压缩感知稀疏信道估计算法. 电子与信息学报, 2016, 38(2): 282-287.

    5. [5]

      赵知劲, 汪百川, 尚俊娜, 徐春云. 基于随机集模型的MIMO-OFDM信道估计算法. 电子与信息学报, 2011, 33(2): 489-493.

    6. [6]

      王磊, 周乐囡, 姬红兵, 林琳. 一种面向信号分类的匹配追踪新方法. 电子与信息学报, 2014, 36(6): 1299-1306.

    7. [7]

      刘亚新, 赵瑞珍, 胡绍海, 姜春晖. 用于压缩感知信号重建的正则化自适应匹配追踪算法. 电子与信息学报, 2010, 32(11): 2713-2717.

    8. [8]

      练秋生, 齐秀梅, 陈书贞, 石保顺. 基于结构稀疏性的单次曝光相位成像算法. 电子与信息学报, 2017, 39(7): 1546-1553.

    9. [9]

      蒋成龙, 张冰尘, 王正道, 洪文. 基于复数信息传递的结构稀疏宽角合成孔径雷达成像算法. 电子与信息学报, 2015, 37(8): 1793-1800.

    10. [10]

      秦文, 彭启琮. 利用ICI自消除改善OFDM系统时变信道估计与均衡的性能. 电子与信息学报, 2008, 30(9): 2189-2192.

    11. [11]

      张晴川, 束锋, 孙锦涛, 王东明. 基于分布式空频码的协作通信系统的信道估计及优化. 电子与信息学报, 2010, 32(11): 2565-2570.

    12. [12]

      徐微, 赵加祥, 王东, 艾小溪. 一种基于多模板的超宽带信道估计算法. 电子与信息学报, 2010, 32(10): 2468-2472.

    13. [13]

      唐怀东, 朱敏, 武岩波. 一种水声通信Turbo均衡中的软迭代信道估计算法. 电子与信息学报, 2013, 35(3): 677-682.

    14. [14]

      刘英男, 蒋伟, 姚春光, 梁庆林. 基于理想自相关训练序列的双选信道估计方法. 电子与信息学报, 2008, 30(10): 2423-2426.

    15. [15]

      叶新荣, 朱卫平, 张爱清, 孟庆民. OFDM系统双选择性慢衰落信道的压缩感知估计. 电子与信息学报, 2015, 37(1): 169-174.

    16. [16]

      于华楠, 郭树旭. 基于压缩感知的超宽带信道估计方法的研究. 电子与信息学报, 2012, 34(6): 1452-1456.

    17. [17]

      物理层超高频射频识别标签信号分离中的信道估计. 电子与信息学报, 2016, 38(1): 119-126.

    18. [18]

      万显荣, 程熠瑶, 易建新, 张勋. DTMB外辐射源雷达参考信号重构信道估计新方法. 电子与信息学报, 2017, 39(5): 1044-1050.

    19. [19]

      吴钊, 张彧, 姜龙, 宋健. 基于宽带突发单载波频域均衡传输的时域精细信道估计方法. 电子与信息学报, 2016, 38(5): 1166-1172.

    20. [20]

      黄敏, 李兵兵. 基于整体最小二乘的联合信道估计及OFDM信号检测算法. 电子与信息学报, 2014, 36(6): 1448-1453.

  • 加载中
计量
  • PDF下载量:  148
  • 文章访问数:  295
  • HTML全文浏览量:  58
文章相关
  • 收稿日期:  2017-05-02
  • 录用日期:  2017-09-27
  • 刊出日期:  2018-01-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章