高级搜索

基于深度多尺度一维卷积神经网络的雷达舰船目标识别

郭晨 简涛 徐从安 何友 孙顺

引用本文: 郭晨, 简涛, 徐从安, 何友, 孙顺. 基于深度多尺度一维卷积神经网络的雷达舰船目标识别[J]. 电子与信息学报, 2019, 41(6): 1302-1309. doi: 10.11999/JEIT180677 shu
Citation:  Chen GUO, Tao JIAN, Congan XU, You HE, Shun SUN. Radar HRRP Target Recognition Based on Deep Multi-Scale 1D Convolutional Neural Network[J]. Journal of Electronics and Information Technology, 2019, 41(6): 1302-1309. doi: 10.11999/JEIT180677 shu

基于深度多尺度一维卷积神经网络的雷达舰船目标识别

    作者简介: 郭晨: 女,1990年生,博士生,研究方向为雷达目标识别、深度学习;
    简涛: 男,1980年生,副教授,研究方向为雷达信号处理、目标识别;
    徐从安: 男,1987年生,讲师,研究方向为多目标跟踪、信息融合、深度学习;
    何友: 男,1956年生,教授,研究方向为信息融合、军事大数据;
    孙顺: 男,1992年生,博士生,研究方向为信息融合、无源定位、协同控制
    通讯作者: 简涛,work_jt@163.com
  • 基金项目: 国家自然科学基金(61471379, 61790551, 61102166),泰山学者工程专项

摘要: 为满足雷达舰船目标识别的高实时性和高泛化性的需求,该文提出了一种基于深度多尺度1维卷积神经网络的目标高分辨1维距离像(HRRP)识别方法。针对高分辨1维距离像特征提取难的问题,所提方法通过共享卷积核的权值,使用多尺度的卷积核提取不同精细度的特征,并构造中心损失函数来提高特征的分辨能力。实验结果表明,该模型可以显著提高目标在非理想条件下的识别正确率,克服目标姿态角敏感性问题,具有良好的鲁棒性和泛化性。

English

    1. [1]

      DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664

    2. [2]

      WANG Yu, ZHANG Liang, WANG Suixue, et al. Radar HRRP target recognition using scattering centers fuzzy matching[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059195.

    3. [3]

      PEI Bingnan and BAO Zheng. Multi-aspect radar target recognition method based on scattering centers and HMMs classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1067–1074. doi: 10.1109/TAES.2005.1541451

    4. [4]

      JIANG Yue, HAN Yubing, and SHENG Weixing. Target recognition of radar HRRP using manifold learning with feature weighting[C]. Proceedings of 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, Nanjing, China, 2016: 1–3. doi: 10.1109/iWEM.2016.7505053.

    5. [5]

      ZHOU Daiying. Radar target HRRP recognition based on reconstructive and discriminative dictionary learning[J]. Signal Processing, 2016, 126: 52–64. doi: 10.1016/j.sigpro.2015.12.006

    6. [6]

      冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227
      FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics &Information Technology, 2015, 37(6): 1457–1462. doi: 10.11999/JEIT141227

    7. [7]

      李龙, 刘峥. 基于核主分量相关判别分析特征提取方法的目标HRRP识别[J]. 电子与信息学报, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329
      LI Long and LIU Zheng. Kernel principal component correlation and discrimination analysis feature extraction method for target HRRP recognition[J]. Journal of Electronics &Information Technology, 2018, 40(1): 173–180. doi: 10.11999/JEIT170329

    8. [8]

      GUO Yu, XIAO Huaitie, KAN Yingzhi, et al. Learning using privileged information for HRRP-based radar target recognition[J]. IET Signal Processing, 2018, 12(2): 188–197. doi: 10.1049/iet-spr.2016.0625

    9. [9]

      PAN Mian, JIANG Jie, KONG Qingpeng, et al. Radar HRRP target recognition based on T-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. doi: 10.1109/LGRS.2017.2726098

    10. [10]

      PAN Mian, JIANG Jie, LI Zhu, et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size[J]. Electronics Letters, 2016, 52(20): 1725–1727. doi: 10.1049/el.2016.3060

    11. [11]

      FENG Bo, CHEN Bo, and LIU Hongwei. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. doi: 10.1016/j.patcog.2016.08.012

    12. [12]

      YAN Huaqing, ZHANG Zenghui, XIONG Gang, et al. Radar HRRP recognition based on sparse denoising autoencoder and multi-layer perceptron deep model[C]. Proceedings of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, Shanghai, China, 2016: 283–288. doi: 10.1109/UPINLBS.2016.7809986.

    13. [13]

      ZHAI Ying, CHEN Bo, ZHANG Hao, et al. Robust variational auto-encoder for radar HRRP target recognition[C]. Proceedings of the 7th International Conference on Intelligent Science and Big Data Engineering, Dalian, China, 2017: 356–367. doi: 10.1007/978-3-319-67777-4_31.

    14. [14]

      ZHAO Feixiang, LIU Yongxiang, HUO Kai, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173. doi: 10.3390/s18010173

    15. [15]

      LUNDéN J and KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485271.

    16. [16]

      BENGIO Y I, GOODFELLOW I, and COURVILLE A. Deep Learning[M]. Cambridge, USA: MIT Press, 2016: 276–324.

    17. [17]

      SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.

    18. [18]

      SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.

    19. [19]

      WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.

    1. [1]

      缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究. 电子与信息学报, 2020, 41(0): 1-7.

    2. [2]

      刘小燕, 李照明, 段嘉旭, 项天远. 基于卷积神经网络的PCB板色环电阻检测与定位方法. 电子与信息学报, 2020, 41(0): 1-10.

    3. [3]

      申铉京, 沈哲, 黄永平, 王玉. 基于非局部操作的深度卷积神经网络车位占用检测算法. 电子与信息学报, 2020, 41(0): 1-8.

    4. [4]

      柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法. 电子与信息学报, 2020, 42(0): 1-8.

    5. [5]

      孙闽红, 丁辰伟, 张树奇, 鲁加战, 邵鹏飞. 基于统计相关差异的多基地雷达拖引欺骗干扰识别. 电子与信息学报, 2020, 42(0): 1-7.

    6. [6]

      游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法. 电子与信息学报, 2020, 41(0): 1-6.

    7. [7]

      归伟夏, 陆倩, 苏美力. 关于系统级故障诊断的烟花-反向传播神经网络算法. 电子与信息学报, 2020, 42(5): 1102-1109.

    8. [8]

      邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配. 电子与信息学报, 2020, 41(0): 1-8.

    9. [9]

      张文明, 姚振飞, 高雅昆, 李海滨. 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型. 电子与信息学报, 2020, 42(5): 1201-1208.

    10. [10]

      姜文, 牛杰, 吴一戎, 梁兴东. 机载多通道SAR运动目标方位向速度和法向速度联合估计算法. 电子与信息学报, 2020, 42(6): 1542-1548.

    11. [11]

      刘新, 阎焜, 杨光耀, 叶盛波, 张群英, 方广有. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究. 电子与信息学报, 2020, 41(0): 1-8.

    12. [12]

      刘焕淋, 杜理想, 陈勇, 王展鹏. 基于灾难预测多区域故障的虚拟光网络生存性映射. 电子与信息学报, 2020, 42(7): 1710-1717.

    13. [13]

      雷大江, 张策, 李智星, 吴渝. 基于多流融合生成对抗网络的遥感图像融合方法. 电子与信息学报, 2020, 41(0): 1-8.

    14. [14]

      黄静琪, 胡琛, 孙山鹏, 高翔, 何兵. 一种基于异步传感器网络的空间目标分布式跟踪方法. 电子与信息学报, 2020, 42(5): 1132-1139.

    15. [15]

      孙子文, 叶乔. 利用震荡环频率特性提取多位可靠信息熵的物理不可克隆函数研究. 电子与信息学报, 2020, 42(0): 1-8.

    16. [16]

      兰红, 方治屿. 零样本图像识别. 电子与信息学报, 2020, 42(5): 1188-1200.

    17. [17]

      蒲磊, 冯新喜, 侯志强, 余旺盛. 基于自适应背景选择和多检测区域的相关滤波算法. 电子与信息学报, 2020, 41(0): 1-7.

    18. [18]

      姚敏立, 王旭健, 张峰干, 戴定成. 基于动态参数差分进化算法的多约束稀布矩形面阵优化. 电子与信息学报, 2020, 42(5): 1281-1287.

    19. [19]

      高东, 梁子林. 基于能量效率的双层非正交多址系统资源优化算法. 电子与信息学报, 2020, 42(5): 1237-1243.

    20. [20]

      晋守博, 魏章志, 李耀红. 基于大通讯时滞的2阶多智能体系统的一致性分析. 电子与信息学报, 2020, 42(0): 1-6.

  • 图 1  本文所提模型示意图

    图 2  多尺度卷积层示意图

    图 3  多尺度降采样层示意图

    图 4  CNN与MSCNN在不同损失函数条件下的特征可视化

    表 1  所提模型中主要的特征提取层的参数个数

    卷积层多尺度卷积层1多尺度下采样层1多尺度卷积层2多尺度下采样层2多尺度卷积层3全连接层合计
    2415524480601644805760256024872
    下载: 导出CSV

    表 2  CNN中主要的特征提取层的参数个数

    卷积层32, 5×1卷积层32, 5×1卷积层64, 3×1卷积层64, 3×1卷积层128, 1×1卷积层128, 1×1全连接层2合计
    1605120614412288819216384204850336
    下载: 导出CSV

    表 3  自编码模型中主要的特征提取层的参数个数

    隐藏层1, 600隐藏层2, 300隐藏层3, 50合计
    30720018000015000502200
    下载: 导出CSV

    表 4  7种舰船目标的结构参数(m)

    舰船编号舰长舰宽吃水深度
    1182.824.18.1
    2172.816.86.5
    3153.820.46.3
    4135.016.84.5
    5121.017.64.3
    6102.216.54.2
    789.312.14.0
    下载: 导出CSV

    表 5  不同模型深度条件下的识别正确率(%)

    模型识别正确率
    本文模型97.67
    模型a89.23
    模型b82.41
    模型c75.25
    下载: 导出CSV

    表 6  所提模型与对比模型在不同信噪比条件下的目标识别正确率(%)

    模型名称SNR (dB)
    51015
    本文模型95.1297.6798.90
    CNN+CL93.8895.8997.56
    SDAE+MLP90.5892.1593.22
    SAE+ELM90.9492.6394.05
    下载: 导出CSV

    表 7  所提模型与对比模型在数据集B下的目标识别正确率(%)

    本文模型CNN+CLSDAE+MLPSAE+ELM
    94.8393.5190.9391.27
    下载: 导出CSV
  • 加载中
图(4)表(7)
计量
  • PDF下载量:  132
  • 文章访问数:  1630
  • HTML全文浏览量:  1595
文章相关
  • 通讯作者:  简涛, work_jt@163.com
  • 收稿日期:  2018-07-06
  • 录用日期:  2019-01-10
  • 网络出版日期:  2019-01-22
  • 刊出日期:  2019-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章