高级搜索

基于Mann-Whitney秩和检验的无线局域网室内映射与定位方法

周牧 王烟濛 袁慧 田增山

引用本文: 周牧, 王烟濛, 袁慧, 田增山. 基于Mann-Whitney秩和检验的无线局域网室内映射与定位方法[J]. 电子与信息学报, 2019, 41(7): 1555-1564. doi: 10.11999/JEIT180392 shu
Citation:  Mu ZHOU, Yanmeng WANG, Hui YUAN, Zengshan TIAN. Mann-Whitney Rank Sum Test Based Wireless Local Area Network Indoor Mapping and Localization Approach[J]. Journal of Electronics and Information Technology, 2019, 41(7): 1555-1564. doi: 10.11999/JEIT180392 shu

基于Mann-Whitney秩和检验的无线局域网室内映射与定位方法

    作者简介: 周牧: 男,1984年生,教授,研究方向为无线定位技术、机器学习与人工智能、凸优化理论;
    王烟濛: 女,1994年生,硕士生,研究方向为室内WLAN定位技术、定位性能评估技术;
    袁慧: 女,1994年生,硕士,研究方向为室内Wi-Fi定位技术、定位网络优化;
    田增山: 男,1968年生,教授,博士生导师,研究方向为移动通信、个人通信、GPS及蜂窝网定位技术
    通讯作者: 王烟濛,hiwangym@gmail.com
  • 基金项目: 国家自然科学基金(61771083, 61704015);重庆市研究生科研创新项目(CYS17221, CYS18240);长江学者和创新团队发展计划基金(IRT1299);重庆市科委重点实验室专项经费基金;重庆市基础与前沿研究计划基金(重点)(cstc2015jcyjBX0065);重庆市高校优秀成果转化基金(KJZH17117)

摘要: 该文提出一种基于Mann-Whitney秩和检验的无线局域网(WLAN)室内映射与定位方法。该方法首先根据实际定位精度需求对目标区域中的运动路径进行分段,同时基于Mann-Whitney秩和检验方法合并相似运动路径片段;然后,利用一种基于相似接收信号强度(RSS)序列片段的信号聚类算法,保证同一聚类中RSS样本的物理邻接关系;最后,通过骨干节点的扩散映射,建立物理与信号空间的映射关系,实现对运动用户的定位。实验结果表明,相比于已有WLAN室内映射与定位方法,该文方法在无需运动传感器辅助和构建位置指纹数据库的条件下,能够实现更高的映射与定位精度。

English

    1. [1]

      WANG Xuyu, GAO Lingjun, and MAO Shiwen. Phasefi: Phase fingerprinting for indoor localization with a deep learning approach[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–6.

    2. [2]

      RADU V, LI Jiwei, KRIARA L, et al. Poster: A hybrid approach for indoor mobile phone localization[C]. Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Low Wood Bay, UK, 2012: 527–528. doi: 10.1145/2307636.2307717.

    3. [3]

      YAELI A, BAK P, FEIGENBLAT G, et al. Understanding customer behavior using indoor location analysis and visualization[J]. IBM Journal of Research and Development, 2014, 58(5/6): 3:1–3:12. doi: 10.1147/JRD.2014.2337552

    4. [4]

      BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. Proceedings of IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 775–784. doi: 10.1109/INFCOM.2000.832252.

    5. [5]

      YOUSSEF M and AGRAWALA A. The Horus WLAN location determination system[C]. The 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, USA, 2015: 205–218.

    6. [6]

      KOWEERAWONG C, WIPUSITWARAKUN K, and KAEMARUNGSI K. Indoor localization improvement via adaptive RSS fingerprinting database[C]. 2013 International Conference on Information Networking, Bangkok, Thailand, 2013: 412–416. doi: 10.1109/ICOIN.2013.6496414.

    7. [7]

      DURRANT-WHYTE H and BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110. doi: 10.1109/MRA.2006.1638022

    8. [8]

      WU Chenshu, YANG Zheng, LIU Yunhao, et al. WILL: Wireless indoor localization without site survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(4): 839–848. doi: 10.1109/TPDS.2012.179

    9. [9]

      WU Chenshu, YANG Zheng, LIU Yunhao, et al. WILL: Wireless indoor localization without site survey[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 64–72. doi: 10.1109/INFCOM.2012.6195809.

    10. [10]

      LI Chao, JIANG Zhuqing, HUANG Chengkai, et al. A smartphone-based indoor positioning system using fuzzy theory and WLAN mapping algorithm[C]. 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Hong Kong, China, 2015: 2177–2181. doi: 10.1109/PIMRC.2015.7343658.

    11. [11]

      NAIK K K and PRASAD M N G. A system for locating users of WLAN using dynamic mapping in indoor and outdoor environment-LOIDS[C]. 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 2008: 156–160. doi: 10.1109/ICCITECHN.2008.4802971.

    12. [12]

      SHIN H, CHON Y, and CHA H. Unsupervised construction of an indoor floor plan using a smartphone[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 889–898. doi: 10.1109/TSMCC.2011.2169403

    13. [13]

      HARDEGGER M, ROGGEN D, MAZILU S, et al. ActionSLAM: Using location-related actions as landmarks in pedestrian SLAM[C]. 2012 International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 2012: 1–10. doi: 10.1109/IPIN.2012.6418932.

    14. [14]

      BRUNO L and ROBERTSON P. WiSLAM: Improving footSLAM with WiFi[C]. 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 2011: 1–10. doi: 10.1109/IPIN.2011.6071916.

    15. [15]

      MIROWSKI P, HO T K, YI S, et al. SignalSLAM: Simultaneous localization and mapping with mixed WiFi, Bluetooth, LTE and magnetic signals[C]. International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2013: 1–10. doi: 10.1109/IPIN.2013.6817853.

    16. [16]

      ZHANG Xiuming, JIN Yunye, TAN H X, et al. CIMLoc: A crowdsourcing indoor digital map construction system for localization[C]. IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Singapore, 2014: 1–6. doi: 10.1109/ISSNIP.2014.6827640.

    17. [17]

      ZHOU Mu, ZHANG Qiao, WANG Yu, et al. Hotspot ranking based indoor mapping and mobility analysis using crowdsourced Wi-Fi signal[J]. IEEE Access, 2017, 5: 3594–3602. doi: 10.1109/ACCESS.2017.2674798

    18. [18]

      ZHOU Mu, ZHANG Qiao, TIAN Zengshan, et al. Indoor WLAN localization using high-dimensional manifold alignment with limited calibration load[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997042.

    19. [19]

      WANG Lin, LIU Wenyuan, JING Nan, et al. Simultaneous navigation and pathway mapping with participating sensing[J]. Wireless Networks, 2015, 21(8): 2727–2745. doi: 10.1007/s11276-015-0944-x

    20. [20]

      MUTHUKRISHNAN K, VAN DER ZWAAG B J, and HAVINGA P. Inferring motion and location using WLAN RSSI[C]. Proceedings of the 2nd International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, Orlando, USA, 2009: 163–182.

    21. [21]

      SHIN H and CHA H. Wi-Fi fingerprint-based topological map building for indoor user tracking[C]. 2010 IEEE 16th International Conference on Embedded and Real-Time Computing Systems and Applications, Macau, China, 2010: 105–113. doi: 10.1109/RTCSA.2010.23.

    22. [22]

      HART P E, NILSSON N J, and RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100–107. doi: 10.1109/TSSC.1968.300136

    23. [23]

      YU Jie, AMORES J, SEBE N, et al. Distance learning for similarity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 451–462. doi: 10.1109/TPAMI.2007.70714

    24. [24]

      MANN H B and WHITNEY D R. On a test of whether one of two random variables is stochastically larger than the other[J]. The Annals of Mathematical Statistics, 1947, 18(1): 50–60. doi: 10.1214/aoms/1177730491

    25. [25]

      吴喜之, 赵博娟. 非参数统计[M]. 第4版, 北京: 中国统计出版社, 2013: 52–56.
      WU Xizhi and ZHAO Bojuan. Nonparametric Test[M]. 4th ed., Beijing: China Statistics Press, 2013: 52–56.

    26. [26]

      王星, 褚挺进. 非参数统计[M]. 第2版, 北京: 清华大学出版社, 2014: 332–334.
      WANG Xing and CHU Tingjin. Non-Parametric Statistics[M]. 2nd ed., Beijing: Tsinghua University Press, 2014: 332–334.

    27. [27]

      HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317–325. doi: 10.1109/T-VT.1980.23859

    28. [28]

      RIRI P C, KRISTALINA P, and SUDARSONO A. Cluster-based pathloss exponential modeling for indoor positioning in wireless sensor network[C]. 2016 International Conference on Knowledge Creation and Intelligent Computing, Manado, Indonesia, 2016: 53–59. doi: 10.1109/KCIC.2016.7883625.

    29. [29]

      ZHOU Mu, ZHANG Qiao, TIAN Zengshan, et al. IMLours: Indoor mapping and localization using time-stamped WLAN received signal strength[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1817–1822.

    30. [30]

      刘东海, 陆丽宇. 小概率事件与实际问题例谈[J]. 科技经济导刊, 2018, 26(12): 114.
      LIU Donghai and LU Liyu. Small probability events and examples of practical problems[J]. Technology and Economic Guide, 2018, 26(12): 114.

    31. [31]

      肖莉. 基于路径损耗的WiFi室内定位系统[D]. [硕士论文], 西安电子科技大学, 2017: 19–31.
      XIAO Li. The WiFi indoor positioning system based on path loss model[D]. [Master dissertation], Xidian University, 2017: 19–31.

    32. [32]

      张文君, 顾行发, 陈良富, 等. 基于均值-标准差的K均值初始聚类中心选取算法[J]. 遥感学报, 2006, 10(5): 715–721. doi: 10.3321/j.issn:1007-4619.2006.05.017
      ZHANG Wenjun, GU Xingfa, CHEN Liangfu, et al. An algorithm for initilizing of K-means clustering based on mean-standard deviation[J]. Journal of Remote Sensing, 2006, 10(5): 715–721. doi: 10.3321/j.issn:1007-4619.2006.05.017

    1. [1]

      李世宝, 王升志, 刘建航, 黄庭培, 张鑫. 基于接收信号强度非齐性分布特征的半监督学习室内定位指纹库构建. 电子与信息学报, 2019, 41(0): 1-8.

    2. [2]

      田增山, 王阳, 周牧, 未平. 基于自适应渐消记忆的蓝牙序列匹配定位算法. 电子与信息学报, 2019, 41(6): 1381-1388.

    3. [3]

      庄雷, 田帅魁, 和孟佯, 宋玉, 王国卿, 刘文覃, 马岭. 基于滑动区域的粒子群虚拟网节能映射算法. 电子与信息学报, 2019, 41(0): 1-7.

    4. [4]

      和孟佯, 庄雷, 龙卫兵, 王国卿. 基于纳什议价的虚拟网多目标映射算法. 电子与信息学报, 2019, 41(4): 980-986.

    5. [5]

      刘影, 钱志鸿, 贾迪. 室内环境中基于天牛须寻优的普适定位方法. 电子与信息学报, 2019, 41(7): 1565-1571.

    6. [6]

      王亚涛, 曾小东, 周龙建. 雷达间歇辐射对测向交叉定位性能的影响分析. 电子与信息学报, 2019, 41(0): 1-6.

    7. [7]

      任智, 吕昱辉, 徐兆坤, 邹明芮, 田洁丽. 一种自适应的太赫兹无线个域网高效定向MAC协议. 电子与信息学报, 2019, 41(1): 99-106.

    8. [8]

      吴培良, 杨霄, 毛秉毅, 孔令富, 侯增广. 一种视角无关的时空关联深度视频行为识别方法. 电子与信息学报, 2019, 41(4): 904-910.

    9. [9]

      陈莹, 何丹丹. 基于贝叶斯融合的时空流异常行为检测模型. 电子与信息学报, 2019, 41(5): 1137-1144.

    10. [10]

      张红旗, 黄睿, 常德显. 一种基于匹配博弈的服务链协同映射方法. 电子与信息学报, 2019, 41(2): 385-393.

    11. [11]

      张会红, 陈治文, 汪鹏君. 二叉决策图映射电路的面积和延时优化. 电子与信息学报, 2019, 41(3): 725-731.

    12. [12]

      涂开辉, 黄志洪, 侯峥嵘, 杨海钢. 基于配置模式匹配和层次化映射结构的高效FPGA码流生成系统研究. 电子与信息学报, 2019, 41(0): 1-7.

    13. [13]

      刘焕淋, 林振宇, 王欣, 陈勇, 向敏, 马跃. 弹性光网络中基于安全性感知的差异化虚拟光网络的映射策略. 电子与信息学报, 2019, 41(2): 424-432.

    14. [14]

      王新玉, 李治莹, 邵帅, 虞志刚. 考虑任务不确定性的片上网络鲁棒性应用映射问题研究. 电子与信息学报, 2019, 41(5): 1152-1159.

    15. [15]

      黄国策, 王桂胜, 任清华, 董淑福, 高维廷, 魏帅. 基于Hilbert信号空间的未知干扰自适应识别方法. 电子与信息学报, 2019, 41(8): 1916-1923.

    16. [16]

      徐丹, 符吉祥, 孙光才, 邢孟道, 苏涛, 保铮. 空间目标的短时三维几何重构方法. 电子与信息学报, 2019, 41(8): 1952-1959.

    17. [17]

      侯志强, 王帅, 廖秀峰, 余旺盛, 王姣尧, 陈传华. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪. 电子与信息学报, 2019, 41(8): 1983-1991.

    18. [18]

      路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法. 电子与信息学报, 2019, 41(0): 1-7.

    19. [19]

      施伟锋, 卓金宝, 兰莹. 一种基于属性空间相似性的模糊聚类算法. 电子与信息学报, 2019, 41(0): 1-7.

    20. [20]

      尹柏强, 王署东, 何怡刚, 佐磊, 李兵, 程珍. 基于快速S变换时频空间模型的电磁干扰复杂度评估方法. 电子与信息学报, 2019, 41(1): 195-201.

  • 图 1  系统架构

    图 2  目标区域结构图

    图 3  目标区域图像

    图 4  不同环境中的距离度量比较

    图 5  某一RSS序列均值滤波结果

    图 6  不同假设模式下的运动路径仿真结果

    图 7  运动路径片段聚类结果

    图 9  物理与信号逻辑图映射关系

    图 8  骨干节点集合重要性对比

    图 10  目标区域划分结果

    图 11  映射精度对比

    图 12  不同假设模式下的定位误差

    图 13  不同系统的定位误差

    图 14  不同物理相似度阈值下的定位误差

  • 加载中
图(14)
计量
  • PDF下载量:  26
  • 文章访问数:  434
  • HTML全文浏览量:  212
文章相关
  • 通讯作者:  王烟濛, hiwangym@gmail.com
  • 收稿日期:  2018-04-26
  • 录用日期:  2019-03-08
  • 网络出版日期:  2019-03-28
  • 刊出日期:  2019-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章