高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用0-1矩阵分解集成的极化SAR图像分类

陈博 王爽 焦李成 刘芳 毛莎莎 张爽

陈博, 王爽, 焦李成, 刘芳, 毛莎莎, 张爽. 利用0-1矩阵分解集成的极化SAR图像分类[J]. 电子与信息学报, 2015, 37(6): 1495-1501. doi: 10.11999/JEIT141059
引用本文: 陈博, 王爽, 焦李成, 刘芳, 毛莎莎, 张爽. 利用0-1矩阵分解集成的极化SAR图像分类[J]. 电子与信息学报, 2015, 37(6): 1495-1501. doi: 10.11999/JEIT141059
Chen Bo, Wang Shuang, Jiao Li-cheng, Liu Fang, Mao Sha-sha, Zhang Shuang. Polarimetric SAR Image Classification via Weighted Ensemble Based on 0-1 Matrix Decomposition[J]. Journal of Electronics and Information Technology, 2015, 37(6): 1495-1501. doi: 10.11999/JEIT141059
Citation: Chen Bo, Wang Shuang, Jiao Li-cheng, Liu Fang, Mao Sha-sha, Zhang Shuang. Polarimetric SAR Image Classification via Weighted Ensemble Based on 0-1 Matrix Decomposition[J]. Journal of Electronics and Information Technology, 2015, 37(6): 1495-1501. doi: 10.11999/JEIT141059

利用0-1矩阵分解集成的极化SAR图像分类

doi: 10.11999/JEIT141059
基金项目: 

国家973计划项目(2013CB329402),国家自然科学基金(61271302, 61272282, 61202176, 61271298)和国家教育部博士点基金(20100203120005)资助课题

Polarimetric SAR Image Classification via Weighted Ensemble Based on 0-1 Matrix Decomposition

  • 摘要: 全极化合成孔径雷达(PolSAR)图像蕴含更丰富的散射信息,具有更多的可用特征。如何使用这些特征是极化SAR图像分类中非常重要的一步,但是目前尚未对此提出非常明确的准则。为了能够有效地解决上述问题,该文提出一种基于特征加权集成的极化SAR图像分类算法。该算法采用0-1矩阵分解集成方法对包括不同特征的数据集进行学习获得相应加权系数,并通过对每个特征集获得的预测结果进行加权集成来提高极化SAR图像分类性能。首先,输入极化SAR数据,获得极化特征作为原始特征集,并对其进行随机抽取获得不同的特征子集;然后,使用0-1矩阵集成算法得到每个特征值相对应的加权系数;最后,通过对各个特征子集的预测结果进行集成得到最终极化SAR图像分类结果。实测L波段和C波段极化数据的实验结果表明,该算法可以有效地提高极化SAR图像分类的准确度。
  • [1] Lee J S and Pottier E. Polarimetric Radar Imaging from Basic to Application[M]. New York: CRC Press, 2011: 1-51, 66-72, 229-247.
    [2] Ding Tao, Anfinsen S N, and Brekke C. A comparative study of sea clutter covariance matrix estimators[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 1010-1014.
    [3] Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    [4] Wang Chun-le, Yu Wei-dong, Wang Robert, et al.. Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2278-2286.
    [5] Zhang Hong, Xie Lei, Wang Chao, et al.. Investigation of the capability of H-decomposition of compact Polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 868-872.
    [6] Freeman A and Durden S L. A three-component scattering model for polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
    [7] Jiao Zhi-hao, Yang Jian, Yeh Chun-mao, et al.. Modified three-component decomposition methord for polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 200-204.
    [8] 刘高峰, 李明, 王亚军, 等. 一种改进的极化SAR自适应非负特征值分解[J]. 电子与信息学报, 2013, 35(6): 1449-1455.
    [9] Liu Gao-feng, Li Ming, Wang Ya-jun, et al.. An improved adaptive non-negative eigenvalue decomposition for polarimetric systhetic aperture radar[J]. Journal of Electronics Information Technology, 2013, 35(6): 1449-1455.
    [10] Yamaguchi Y, Moriyama T, Ishido M, et al.. Four-component scattering model for polarimetric SAR image decomposition [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706.
    [11] An W, Xie C, Yuan X, et al.. Four-component decomposition of polarimetric SAR image with deorientation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1090-1094.
    [12] 刘高峰, 李明, 王亚军, 等. 基于层次非负特征值约束的Yamaguchi分解[J]. 电子与信息学报, 2013, 35(11): 2678-2685.
    [13] Liu Gao-feng, Li Ming, Wang Ya-jun, et al.. Yamaguchi decomposition based on hierarchical nonnegative eigenvalue restriction[J]. Journal of Electronics Information Technology, 2013, 35(11): 2678-2685.
    [14] Liu Gao-feng, Li Ming, Wang Ya-jun, et al.. Four-component scattering power decomposition of remainder coherency matrices constrained for nonnegative eigenvalues[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 494-498.
    [15] Lee J S, Grunes M R, and Kwok T. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299-2311.
    [16] Fukuda S and Hirosawa H. Support vector machine classification of land cover: application to polarimetric SAR data[C]. IEEE International Geoscience And Remote Sensing Symposium (IGARSS01), Sydney, Australia, 2001: 187-189.
    [17] Fukuda S, Katagiri R, and Hirsosawa H. Unsupervised approach for polarimetric SAR image classification using support vector machines[C]. IEEE International Geoscience And Remote Sensing Symposium (IGARSS02), Toronto, Canada, 2002, 5: 2599-2601.
    [18] Kumar S, Ghosh J, and Crawford M. Best-bases feature extraction algorithm for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1368-1379.
    [19] 徐丰, 金亚秋. 目标散射的去取向理论和应用(一)去取向理论[J]. 电波科学学报, 2006, 21(1): 6-15.
    [20] Xu Feng and Jin Ya-qiu. Theory and application of deorientation for target scattering Part I: deorientation theory[J]. Chinese Journal of Radio Science, 2006, 21(1): 6-15.
    [21] Mao Sha-sha, Xiong Lin, Jiao Li-cheng, et al.. Weighted ensemble based on 0-1 matrix decomposition[J]. Electronics Letters, 2013, 49(2): 116-118.
    [22] Henri Maitre. 孙洪, 等译. 合成孔径雷达图像处理[M]. 北京: 电子工业出版社, 2005: 第4章.
    [23] Kuncheva L I. Combining Pattern Classifiers: Methods and Algorithms[M]. Hoboken, New Jersey, John Wiley Sons, 2004: Chapter 1.
    [24] Christopher J C B. A tutorial on support vector machine for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • [1] 陈皓, 李广, 刘洋, 强永乾.  一种在MR图像中进行脑胶质瘤检测和病灶分割的方法, 电子与信息学报. doi: 10.11999/JEIT200033
    [2] 谢涛, 吴恩斯.  一种鲁棒的基于集成学习的核相关红外目标跟踪算法, 电子与信息学报. doi: 10.11999/JEIT170527
    [3] 张腊梅, 段宝龙, 邹斌.  极化SAR图像目标分解方法的研究进展, 电子与信息学报. doi: 10.11999/JEIT160992
    [4] 范庆辉, 慕建君, 项德良, 宋文青.  基于非平稳性和极化相干系数比的PolSAR图像建筑物检测, 电子与信息学报. doi: 10.11999/JEIT161000
    [5] 范庆辉, 卢红喜, 保铮, 肖春宝.  基于半正定约束的极化相似度最优模型匹配目标分解, 电子与信息学报. doi: 10.11999/JEIT141468
    [6] 崔浩贵, 刘涛, 蒋宇中, 高俊.  基于混合矩的极化SAR图像K分布模型参数估计新方法, 电子与信息学报. doi: 10.11999/JEIT140551
    [7] 杨学志, 陈靖, 周芳, 郎文辉, 郑鑫, 李国强.  基于同质像素预选择的极化SAR图像非局部均值滤波, 电子与信息学报. doi: 10.11999/JEIT150314
    [8] 杨兴明, 吴克伟, 孙永宣, 谢昭.  可迁移测度准则下的协变量偏移修正多源集成方法, 电子与信息学报. doi: 10.11999/JEIT150323
    [9] 刘家辰, 苗启广, 曹莹, 宋建锋, 权义宁.  基于混合多样性生成与修剪的集成单类分类算法, 电子与信息学报. doi: 10.11999/JEIT140161
    [10] 徐涛, 杨奇川, 吕宗磊.  一种基于动态集成学习的机场噪声预测模型, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01410
    [11] 刘高峰, 李明, 王亚军, 张鹏, 吴艳.  基于层次非负特征值约束的Yamaguchi分解, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01381
    [12] 刘高峰, 李明, 王亚军, 张鹏.  一种新的基于非反射对称非负特征值分解的Freeman分解, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00897
    [13] 宋相法, 焦李成.  基于稀疏编码和集成学习的多示例多标记图像分类方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01218
    [14] 杨磊, 刘伟, 王志刚.  加权全极化SAR图像非监督Wishart分类方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00950
    [15] 吴永辉, 计科峰, 郁文贤.  基于H-和改进C-均值的全极化SAR图像非监督分类, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.00635
    [16] 方敏, 王宝树.  基于AdaBoost的改进模糊分类规则集成学习, 电子与信息学报.
    [17] 刘秀清, 杨汝良, 杨震.  双波段全极化SAR图像非监督分类方法及实验研究, 电子与信息学报.
    [18] 杨震, 杨汝良, 刘秀清.  SAR图像的极化干涉非监督Wishart分类方法和实验研究, 电子与信息学报.
    [19] 王晓兰, 戴博伟, 杨汝良.  全极化合成孔径雷达多视图像的极化特征分析, 电子与信息学报.
    [20] 刘国庆, 熊红, 黄顺吉, A.Torre, F.Rubertone.  多视极化合成孔径雷达图象的分类和极化通道优化, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  678
    • HTML全文浏览量:  25
    • PDF下载量:  643
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-08-11
    • 修回日期:  2014-10-22
    • 刊出日期:  2015-06-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注