高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法

毛琳琳 张群飞 黄建国 史文涛 韩晶

毛琳琳, 张群飞, 黄建国, 史文涛, 韩晶. 基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法[J]. 电子与信息学报, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208
引用本文: 毛琳琳, 张群飞, 黄建国, 史文涛, 韩晶. 基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法[J]. 电子与信息学报, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208
Mao Lin-lin, Zhang Qun-fei, Huang Jian-guo, Shi Wen-tao, Han Jing . Improved Multiple Signal Classification Algorithm for Direction of Arrival Estimation Based on Covariance Matrix of Cross-correlation[J]. Journal of Electronics and Information Technology, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208
Citation: Mao Lin-lin, Zhang Qun-fei, Huang Jian-guo, Shi Wen-tao, Han Jing . Improved Multiple Signal Classification Algorithm for Direction of Arrival Estimation Based on Covariance Matrix of Cross-correlation[J]. Journal of Electronics and Information Technology, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208

基于互相关协方差矩阵的改进多重信号分类高分辨波达方位估计方法

doi: 10.11999/JEIT141208
基金项目: 

国家自然科学基金(61271415)

Improved Multiple Signal Classification Algorithm for Direction of Arrival Estimation Based on Covariance Matrix of Cross-correlation

  • 摘要: 针对经典高分辨波达方位(DOA)估计方法在低信噪比下分辨性能较差的问题,该文提出一种适用于主动探测系统的基于互相关矩阵的改进多重信号分类(MUSIC)高分辨方位估计方法(I-MUSIC)。该方法首先利用主动声呐发射信号已知的特性,将发射信号与阵元接收信号进行互相关,利用互相关序列形成新的空域协方差矩阵,再进行特征分解。理论分析表明,互相关处理在抑制噪声的同时保留了阵元之间的相位信息,可以得到比MUSIC方法更准确的子空间划分,进而提高低信噪比方位估计性能。在此基础上,提出一种基于相关时间门限的改进MUSIC高分辨方位估计(T-MUSIC)方法,通过对互相关序列设置时间门限进一步提高方位估计信噪比。仿真结果表明,与MUSIC方法相比,I-MUSIC与T-MUSIC可以分别使低信噪比时的估计性能提高3 dB和6 dB,相应平均估计误差分别为原方法的77%和53%。在阵元间接收噪声存在相关性时,T-MUSIC与I-MUSIC方法相比可获得8 dB的估计增益,估计性能更优。I-MUSIC与T-MUSIC应用于多目标主动探测,可大幅提高探测系统在低信噪比下的方位估计性能。
  • [1] Cheng Q, Lei H, and So H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144.
    [2] Zeng W, So C and Lei H. lp-MUSIC: Robust direction-of- arrival estimator for impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4296-4308.
    [3] Vincent F, Besson O, and Chaumette E. Approximate maximum likelihood direction of arrival estimation for two closely spaced sources[C]. Proceedings of the 2013 IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Martin, France, 2013: 320-323.
    [4] Heidenreich P and Zoubir M. Fast maximum likelihood DOA estimation in the two-target case with applications to automotive radar[J]. Signal Processing, 2013, 93(12): 3400-3409.
    [5] Lee Y, Hudson E, and Yao K. Acoustic DOA estimation: an approximate maximum likelihood approach[J]. IEEE Systems Journal, 2014, 8(1): 131-141.
    [6] Park S, Choi H, Yang W, et al.. Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources[C]. Proceedings of the 11th International Conference on Advanced Communication Technology, Piscataway, USA, 2009: 2295-2298.
    [7] Wang H, Kay S, and Saha S. An importance sampling maximum likelihood direction of arrival estimator[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5082-5092.
    [8] Li X and Huang J. Bayesian high resolution DOA estimator based on importance sampling[C]. Proceedings of IEEE Oceans 2005, Washington, D.C., USA, 2005, 1: 611-615.
    [9] Shi W, Huang J, and Hou Y. Fast DOA estimation algorithm for MIMO sonar based on ant colony optimization[J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 173-178.
    [10] Yan F G, Jin M, and Qiao X L. Source localization based on symmetrical MUSIC and its statistical performance analysis[J]. Science China Information Sciences, 2013, 56(6): 1-13.
    [11] Di C, Elio D, and Giovanni J. Wideband source localization by space-time MUSIC subspace estimation[C]. Proceedings of 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 2013: 331-336.
    [12] Choi W and Sarkar K. Minimum norm property for the sum of the adaptive weights for a direct data domain least squares algorithm[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(3): 1045-1050.
    [13] Rangarao V and Venkatanarasimhan S. Gold-MUSIC: a variation on music to accurately determine peaks of the spectrum[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2263-2268.
    [14] Yan F, Jin M, and Qiao X. Low-complexity DOA estimation based on compressed MUSIC and its performance analysis[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1915-1930.
    [15] Reddy V, Ng B, and Khong A. Insights into MUSIC-like algorithm[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2551-2556.
    [16] Ying Z and Boon P. MUSIC-like DOA estimation without estimating the number of sources[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1668-1676.
    [17] Azaria M and Hertz D. Time delay estimation by generalized cross- correlation methods[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1984, 32(2): 280-285.
    [18] Benesty J, Jingdong C, and Yiteng H. Time-delay estimation via linear interpolation and cross correlation[J]. IEEE Transactions on Speech and Audio Processing, 2004, 12(5): 509-519.
    [19] Pertil? P, Korhonen T, and Visa A. Measurement combination for acoustic source localization in a room environment[J]. EURASIP Journal on Audio, Speech, and Music Processing, 2008, 3: 1-14.
    [20] Dermatas S, Fakotakis D, and Kokkinakis K. Fast endpoint detection algorithm for isolated word recognition in office environment[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 1991:733-736.
    [21] 郭胜楠, 崔慧娟, 唐昆. 低信噪比下基于短时谱估计的语音增强[J]. 清华大学学报(自然科学版), 2010, 50(1): 149-152.
    [22] Guo Sheng-nan, Cui Hui-juan, and Tang Kun. Speech enhancement based on short time spectral amplitude estimates in low SNR[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(1): 149-152.
    [23] 李志舜. 鱼雷自导信号与信息处理[M]. 西安: 西北工业大学出版社, 2004: 138-144.
  • [1] 邱天爽.  相关熵与循环相关熵信号处理研究进展, 电子与信息学报. doi: 10.11999/JEIT190646
    [2] 许华健, 杨志伟, 廖桂生, 田敏.  一种稳健的非均匀杂波协方差矩阵估计方法, 电子与信息学报. doi: 10.11999/JEIT160747
    [3] 张东伟, 郭英, 张坤峰, 齐子森, 韩立峰, 尚耀波.  多跳频信号频率跟踪与二维波达方向实时估计算法, 电子与信息学报. doi: 10.11999/JEIT151170
    [4] 李海, 刘新龙, 蒋婷, 吴仁彪.  基于随机矩阵理论和最小描述长度的机载前视阵雷达杂波自由度估计, 电子与信息学报. doi: 10.11999/JEIT160132
    [5] 徐成发, 郝宇星, 陆潞, 高梅国.  基于互相关的快速角度估计算法, 电子与信息学报. doi: 10.11999/JEIT151021
    [6] 刘颖, 陈殿仁, 陈磊, 李兴广.  基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法, 电子与信息学报. doi: 10.11999/JEIT140876
    [7] 张东伟, 郭英, 齐子森, 侯文林, 张波, 李教.  多跳频信号波达方向与极化状态联合估计算法, 电子与信息学报. doi: 10.11999/JEIT141315
    [8] 赵晓晖, 李晓燕.  认知无线电中基于阵列天线和协方差矩阵的频谱感知算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01057
    [9] 马宁, 王建新, 董宁斐.  基于正交匹配追踪的欠采样LFM信号参数估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01399
    [10] 王建, 袁宵, 李禹, 黄春琳, 粟毅.  利用互相关和Hough变换快速检测探地雷达目标, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01134
    [11] 田瑶, 张莉.  对称稳定分布中预处理的分数低阶协方差时差估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01554
    [12] 郭黎利, 周彬, 孙志国, 刘湘蒲.  对称升余弦键控信号相关性分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01361
    [13] 肖玮, 涂亚庆, 刘良兵, 莫正军.  频率估计的一种多段同频正弦信号频谱相关算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00665
    [14] 李鹏飞, 钟子发, 张旻.  未知信源数目的DOA估计方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00611
    [15] 刘锋, 徐会法, 陶然.  基于FRFT的对称三角LFMCW信号检测与参数估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01150
    [16] 周新鹏, 韩峰, 魏国华, 吴嗣亮.  基于噪声子空间奇异值的信号分量数目估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01216
    [17] 王堃, 吴嗣亮, 韩月涛.  伽利略搜救信号FOA和TOA估计的克拉美-罗界, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00017
    [18] 王堃, 吴嗣亮, 侯建刚.  实际COSPAS-SARSAT信号TOA估计算法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00338
    [19] 谢洪森, 邹鲲.  一种非均匀场景复合高斯杂波下的自适应检测器, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01412
    [20] 曹向海, 刘宏伟, 吴顺君.  基于在线Music算法的DOA估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00565
  • 加载中
  • 计量
    • 文章访问数:  761
    • HTML全文浏览量:  32
    • PDF下载量:  672
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-09-17
    • 修回日期:  2015-04-16
    • 刊出日期:  2015-08-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注