高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于增强群跟踪器和深度学习的目标跟踪

程帅 曹永刚 孙俊喜 赵立荣 刘广文 韩广良

程帅, 曹永刚, 孙俊喜, 赵立荣, 刘广文, 韩广良. 基于增强群跟踪器和深度学习的目标跟踪[J]. 电子与信息学报, 2015, 37(7): 1646-1653. doi: 10.11999/JEIT141362
引用本文: 程帅, 曹永刚, 孙俊喜, 赵立荣, 刘广文, 韩广良. 基于增强群跟踪器和深度学习的目标跟踪[J]. 电子与信息学报, 2015, 37(7): 1646-1653. doi: 10.11999/JEIT141362
Cheng Shuai, Cao Yong-gang, Sun Jun-xi, Zhao Li-rong, Liu Guang-wen, Han Guang-liang. Target Tracking Based on Enhanced Flock of Tracker and Deep Learning[J]. Journal of Electronics and Information Technology, 2015, 37(7): 1646-1653. doi: 10.11999/JEIT141362
Citation: Cheng Shuai, Cao Yong-gang, Sun Jun-xi, Zhao Li-rong, Liu Guang-wen, Han Guang-liang. Target Tracking Based on Enhanced Flock of Tracker and Deep Learning[J]. Journal of Electronics and Information Technology, 2015, 37(7): 1646-1653. doi: 10.11999/JEIT141362

基于增强群跟踪器和深度学习的目标跟踪

doi: 10.11999/JEIT141362
基金项目: 

国家自然科学基金(61172111)和吉林省科技厅项目(20090512, 20100312)资助课题

Target Tracking Based on Enhanced Flock of Tracker and Deep Learning

  • 摘要: 为解决基于外观模型和传统机器学习目标跟踪易出现目标漂移甚至跟踪失败的问题,该文提出以跟踪-学习-检测(TLD)算法为框架,基于增强群跟踪器(FoT)和深度学习的目标跟踪算法。FoT实现目标的预测与跟踪,增添基于时空上下文级联预测器提高预测局部跟踪器的成功率,快速随机采样一致性算法评估全局运动模型,提高目标跟踪的精确度。深度去噪自编码器和支持向量机分类器构建深度检测器,结合全局多尺度扫描窗口搜索策略检测可能的目标。加权P-N学习对样本加权处理,提高分类器的分类精确度。与其它跟踪算法相比较,在复杂环境下,不同图片序列实验结果表明,该算法在遮挡、相似背景等条件下具有更高的准确度和鲁棒性。
  • [1] Wu Y, Lim J, and Yang M H. Online object tracking: A benchmark[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411-2418.
    [2] Ross D A, Lim J, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(3): 125-141.
    [3] Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
    [4] 陈东成, 朱明, 高文, 等. 在线加权多示例学习实时目标跟踪[J]. 光学精密工程, 2014, 22(6): 1661-1667.
    [5] Chen Dong-cheng, Zhu Ming, Gao Wen, et al.. Real-time object tracking via online weighted multiple instance learning [J]. Optics and Precision Engineerin, 2014, 22(6): 1661-1667.
    [6] He S F, Yang Q X, Rynson L, et al.. Visual Tracking via Locality Sensitive Histograms[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2427-2434.
    [7] Grabner H, Grabner M, and Bischof H. Real-time tracking via online boosting[C]. Proceedings of British Machine Vision Conference, Edinburgh, UK, 2006: 47-56.
    [8] Grabner H, Leistner C, and Bischof H. Semi-supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany, 2008: 234-247.
    [9] 颜佳, 吴敏渊. 遮挡环境下采用在线Boosting的目标跟踪[J]. 光学精密工程, 2012, 20(2): 439-446.
    [10] Yan Jia and Wu Ming-yuan. On-line boosting based target tracking under occlusion[J]. Optics and Precision Engineering, 2012, 20(2): 439-446.
    [11] Kalal Z, Matas J, and Mikolajczyk K. P-N learning: bootstrapping binary classifiers by structural constraints[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2010: 49-56.
    [12] 郑胤, 陈权崎, 章毓晋. 深度学习及其在目标和行为识别中的新进展[J]. 中国图像图形学报, 2014, 19(2): 175-184.
    [13] Zheng Ying, Chen Quan-qi, and Zhang Yu-jin. Deep learning and its new progress in object and behavior recognition[J]. Journal of Image and Graphic, 2014, 19(2): 175-184.
    [14] Tomas V and Jiri M. Robustifying the flock of trackers[C]. Proceedings of Computer Vision Winter Workshop, Graz, Austria, 2011: 91-97.
    [15] 周鑫, 钱秋朦, 叶永强, 等. 改进后的TLD视频目标跟踪方法[J]. 中国图象图形学报, 2013, 18(9): 1115-1123.
    [16] Zhou Xin, Qian Qiu-meng, Ye Yong-qiang, et al.. Improved TLD visual target tracking algorithm[J]. Journal of Image and Graphic, 2013, 18(9): 1115-1123.
    [17] Kalal Z, Mikolajczyk K, and Matas J. Tracking-learning- detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
    [18] Zhang K, Zhang L, Liu Q, et al.. Fast visual tracking via dense spatio-temporal context learning[C]. Proceedings of European Conference on Computer Vision, Zurich, Switzerland, 2014: 127-141.
    [19] Botterill T, Mills S, and Green R D. New conditional sampling strategies for speeded-up RANSAC[C]. Proceedings of British Machine Vision Conference, London, UK, 2009: 1-11.
    [20] Vincent P, Larochelle H, Lajoie I, et al.. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(2): 3371-3408.
    [21] Tang Yi-chuan. Deep learning using linear support vector machines[C]. Proceedings of International Conference on Machine Learning: Challenges in Representational Learning Workshop, Atlanta, USA, 2013: 266-272.
    [22] Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    [23] Torralba A, Fergus R, and Freeman W T. 80 million tiny images: a large data set for nonparametric object and scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1958-1970.
    [24] 高文, 汤洋, 朱明. 复杂背景下目标检测的级联分类器算法研究[J]. 物理学报, 2014, 63(9): 094204.
    [25] Gao Wen, Tang Yang, and Zhu Ming. Study on the cascade classifier in target detection under complex background[J]. Acta Physica Sinica, 2014, 63(9): 094204.
    [26] Collins R T, Zhou X H, and Teh S K. An open source tracking test bed and evaluation web site[C]. Proceedings of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Breckenridge, USA, 2005: 17-24.
    [27] Stalder S, Grabner H, and Van G L. Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition[C]. Proceedings of IEEE Conference on Computer Vision Workshops, Kyoto, Japan, 2009: 1409-1416.
    [28] Dinh T B, Vo N, and Medion G. Context tracker: exploring supporters and distracters in unconstrained environments[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2011: 1177-1184.
    [29] Qian Yu, Thang B D, and Gerard M. Online tracking and reacquisition using co-trained generative and discriminative trackers[C]. Proceedings of European Conference on Computer Vision, Marseille, France, 2008: 678-691.
  • [1] 张文明, 姚振飞, 高雅昆, 李海滨.  一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型, 电子与信息学报. doi: 10.11999/JEIT190229
    [2] 袁野, 贾克斌, 刘鹏宇.  基于深度卷积神经网络的多元医学信号多级上下文自编码器, 电子与信息学报. doi: 10.11999/JEIT190135
    [3] 付晓薇, 杨雪飞, 陈芳, 李曦.  一种基于深度学习的自适应医学超声图像去斑方法, 电子与信息学报. doi: 10.11999/JEIT190580
    [4] 陈怡, 唐迪, 邹维.  基于深度学习的Android恶意软件检测:成果与挑战, 电子与信息学报. doi: 10.11999/JEIT200009
    [5] 董书琴, 张斌.  基于深度特征学习的网络流量异常检测方法, 电子与信息学报. doi: 10.11999/JEIT190266
    [6] 文成林, 吕菲亚.  基于深度学习的故障诊断方法综述, 电子与信息学报. doi: 10.11999/JEIT190715
    [7] 张淑军, 张群, 李辉.  基于深度学习的手语识别综述, 电子与信息学报. doi: 10.11999/JEIT190416
    [8] 李彩林, 张青华, 陈文贺, 江晓斌, 袁斌, 杨长磊.  基于深度学习的绝缘子定向识别算法, 电子与信息学报. doi: 10.11999/JEIT190350
    [9] 侯志强, 王鑫, 余旺盛, 戴铂, 金泽芬芬.  基于自适应深度稀疏网络的在线跟踪算法, 电子与信息学报. doi: 10.11999/JEIT160762
    [10] 李祖贺, 樊养余, 王凤琴.  YUV空间中基于稀疏自动编码器的无监督特征学习, 电子与信息学报. doi: 10.11999/JEIT150557
    [11] 侯志强, 戴铂, 胡丹, 余旺盛, 陈晨, 范舜奕.  基于感知深度神经网络的视觉跟踪, 电子与信息学报. doi: 10.11999/JEIT151449
    [12] 齐苑辰, 吴成东, 陈东岳, 陆云松.  基于稀疏表达的超像素跟踪算法, 电子与信息学报. doi: 10.11999/JEIT140374
    [13] 张超, 吴小培, 吕钊.  基于独立分量分析的运动目标检测算法中对通道数选择和观测向量生成方式的实验和分析, 电子与信息学报. doi: 10.11999/JEIT140197
    [14] 及歆荣, 侯翠琴, 侯义斌.  无线传感器网络下线性支持向量机分布式协同训练方法研究, 电子与信息学报. doi: 10.11999/JEIT140408
    [15] 程帅, 孙俊喜, 曹永刚, 刘广文, 韩广良.  多示例深度学习目标跟踪, 电子与信息学报. doi: 10.11999/JEIT150319
    [16] 李寰宇, 毕笃彦, 杨源, 查宇飞, 覃兵, 张立朝.  基于深度特征表达与学习的视觉跟踪算法研究, 电子与信息学报. doi: 10.11999/JEIT150031
    [17] 许敏, 王士同, 史荧中.  一种新的面向迁移学习的L2核分类器, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01647
    [18] 孙志军, 薛磊, 许阳明.  基于深度学习的边际Fisher分析特征提取算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00949
    [19] 刘忠宝, 王士同.  基于熵理论和核密度估计的最大间隔学习机, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01434
    [20] 潘泓, 李晓兵, 金立左, 夏良正.  一种基于二值粒子群优化和支持向量机的目标检测算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00260
  • 加载中
  • 计量
    • 文章访问数:  715
    • HTML全文浏览量:  53
    • PDF下载量:  1539
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-10-29
    • 修回日期:  2015-03-23
    • 刊出日期:  2015-07-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注