高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同质像素预选择的极化SAR图像非局部均值滤波

杨学志 陈靖 周芳 郎文辉 郑鑫 李国强

杨学志, 陈靖, 周芳, 郎文辉, 郑鑫, 李国强. 基于同质像素预选择的极化SAR图像非局部均值滤波[J]. 电子与信息学报, 2015, 37(12): 2991-2999. doi: 10.11999/JEIT150314
引用本文: 杨学志, 陈靖, 周芳, 郎文辉, 郑鑫, 李国强. 基于同质像素预选择的极化SAR图像非局部均值滤波[J]. 电子与信息学报, 2015, 37(12): 2991-2999. doi: 10.11999/JEIT150314
Yang Xue-zhi, Chen Jing, Zhou Fang, Lang Wen-hui, Zheng Xin, Li Guo-qiang. Polarimetric SAR Image Despeckling Using Non Local Means Filter Based on Homogeneous Pixels Preselection[J]. Journal of Electronics and Information Technology, 2015, 37(12): 2991-2999. doi: 10.11999/JEIT150314
Citation: Yang Xue-zhi, Chen Jing, Zhou Fang, Lang Wen-hui, Zheng Xin, Li Guo-qiang. Polarimetric SAR Image Despeckling Using Non Local Means Filter Based on Homogeneous Pixels Preselection[J]. Journal of Electronics and Information Technology, 2015, 37(12): 2991-2999. doi: 10.11999/JEIT150314

基于同质像素预选择的极化SAR图像非局部均值滤波

doi: 10.11999/JEIT150314
基金项目: 

国家自然科学基金(61371154, 41076120, 61271381, 61102154),光电控制技术重点实验室和航空科学基金联合资助项目(201301P4007)和中央高校基本科研业务费专项(2012HGCX0001)

Polarimetric SAR Image Despeckling Using Non Local Means Filter Based on Homogeneous Pixels Preselection

Funds: 

The National Natural Science Foundation of China (61371154, 41076120, 61271381, 61102154)

  • 摘要: 该文针对在极化合成孔径雷达(PolSAR)图像相干斑抑制过程中结构特征和极化散射特性保持的难题,提出一种基于同质像素预选择的非局部均值滤波算法(NLM-HPP)。该算法结合像素统计特性和极化散射机制选择滤波同质像素,并引入结构损失函数提高非局部均值(NLM)算法中像素间相似性度量的准确性,最后用改进的相似性度量对同质像素的协方差矩阵进行加权平均,实现对PolSAR图像的相干斑抑制。对真实PolSAR数据进行的实验结果表明,与现有的Refined Lee滤波、基于散射模型的滤波方法和两种非局部均值滤波相比,此方法在有效滤除相干斑点的同时能更好地保持PolSAR图像的结构信息和极化信息。
  • [1] Alonso-Gonzlez A, Lpez-Martnez C, and Salembier P. Filtering and segmentation of polarimetric SAR data based on binary partition trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 593-605.
    [2] 周晓光, 匡纲要, 万建伟. 多极化SAR图像斑点抑制综述[J]. 中国图象图形学报, 2008, 13(3): 377-385.
    [3] Zhou Xiao-guang, Kuang Gang-yao, and Wan Jian-wei. A review of polarimetric SAR speckle reduction[J]. Journal of Image and Graphics, 2008, 13(3): 377-385.
    [4] Lee J S, Grunes M R, Schuler D L, et al.. Scattering- model-based speckle filtering of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 176-187.
    [5] Lee J S, Grunes M R, and De Grandi G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363-2373.
    [6] Deledalle C A, Denis L, and Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661-2672.
    [7] Liu G and Zhong H. Nonlocal means filter for polarimetric SAR data despeckling based on discriminative similarity measure[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 514-518.
    [8] Chen J, Chen Y, An W, et al.. Nonlocal filtering for polarimetric SAR data: A pretest approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1744-1754.
    [9] Lee J S, Ainsworth T L, Wang Y, et al.. Polarimetric SAR speckle filtering and the extended sigma filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1150-1160.
    [10] 易子麟, 尹东, 胡安洲, 等. 基于非局部均值滤波的SAR图像去噪[J]. 电子与信息学报,2012, 34(4): 950-955.
    [11] Yi Z L, Yin D, Hu A Z, et al.. SAR image despeckling based on non-local means filter[J]. Journal of Electronics and Information Technology, 2012, 34(4): 950-955.
    [12] Buades A, Coll B, and Morel J M. A non-local algorithm for image denoising[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005, 2: 60-65.
    [13] 钟莹, 杨学志, 唐益明, 等. 采用结构自适应块匹配的非局部均值去噪算法[J]. 电子与信息学报, 2013, 35(12): 2908-2915.
    [14] Zhong Y, Yang X Z, Tang Y M, et al.. Non-local means denoising derived from structure-adapted block matching[J]. Journal of Electronics Information Technology, 2013, 35(12): 2908-2915.
    [15] Torres L, Sant'Anna S J S, da Costa Freitas C, et al.. Speckle reduction in polarimetric SAR imagery with stochastic distances and nonlocal means[J]. Pattern Recognition, 2014, 47(1): 141-157.
    [16] Zhong H, Zhang J, and Liu G. Robust polarimetric SAR despeckling based on nonlocal means and distributed Lee filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4198-4210.
    [17] Deledalle C A, Tupin F, and Denis L. Polarimetric SAR estimation based on non-local means[C]. IEEE International on Geoscience and Remote Sensing Symposium, Hawaii, USA, 2010: 2515-2518.
    [18] D'Hondt O, Guillaso S, and Hellwich O. Iterative bilateral filtering of polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1628-1639.
    [19] Deledalle C A, Denis L, Poggi G, et al.. Exploiting patch similarity for SAR image processing: the nonlocal paradigm [J]. IEEE Signal Processing Magazine, 2014, 31(4): 69-78.
    [20] Lee J S, Wen J H, Ainsworth T L, et al.. Improved sigma filter for speckle filtering of SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 691-707.
    [21] Dellepiane S G and Angiati E. Quality assessment of despeckled SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 691-70.
    [22] Hebar M, Gleich D, and Cucej Z. Autobinomial model for SAR image despeckling and information extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2818-2835.
    [23] Ding Z, Zeng T, Dong F, et al.. An improved PolSAR image speckle reduction algorithm based on structural judgment and hybrid four-component polarimetric decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4438-4449.
    [24] Feng H, Hou B, and Gong M. SAR image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2724-2737.
    [25] Lee J S, Grunes M R, Pottier E, et al.. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
  • [1] 孙伟峰, 戴永寿.  采用多级残差滤波的非局部均值图像去噪方法, 电子与信息学报. doi: 10.11999/JEIT151227
    [2] 张腊梅, 段宝龙, 邹斌.  极化SAR图像目标分解方法的研究进展, 电子与信息学报. doi: 10.11999/JEIT160992
    [3] 范庆辉, 慕建君, 项德良, 宋文青.  基于非平稳性和极化相干系数比的PolSAR图像建筑物检测, 电子与信息学报. doi: 10.11999/JEIT161000
    [4] 蒋成龙, 张冰尘, 王正道, 洪文.  基于复数信息传递的结构稀疏宽角合成孔径雷达成像算法, 电子与信息学报. doi: 10.11999/JEIT141300
    [5] 陈博, 王爽, 焦李成, 刘芳, 毛莎莎, 张爽.  利用0-1矩阵分解集成的极化SAR图像分类, 电子与信息学报. doi: 10.11999/JEIT141059
    [6] 崔浩贵, 刘涛, 蒋宇中, 高俊.  基于混合矩的极化SAR图像K分布模型参数估计新方法, 电子与信息学报. doi: 10.11999/JEIT140551
    [7] 范庆辉, 卢红喜, 保铮, 肖春宝.  基于半正定约束的极化相似度最优模型匹配目标分解, 电子与信息学报. doi: 10.11999/JEIT141468
    [8] 杨学志, 叶铭, 吴克伟, 郎文辉, 郑鑫, 李国强.  结构保持的双边滤波极化SAR图像降噪, 电子与信息学报. doi: 10.11999/JEIT140199
    [9] 刘高峰, 李明, 王亚军, 张鹏, 吴艳.  基于层次非负特征值约束的Yamaguchi分解, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.01381
    [10] 刘高峰, 李明, 王亚军, 张鹏.  一种新的基于非反射对称非负特征值分解的Freeman分解, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00897
    [11] 易子麟, 尹东, 胡安洲, 张荣.  基于非局部均值滤波的SAR图像去噪, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00918
    [12] 张小华, 陈佳伟, 孟红云, 焦李成, 孙翔.  基于方向增强邻域窗和非下采样Shearlet描述子的非局部均值图像去噪, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00221
    [13] 邹斌, 张腊梅, 孙德明, 王伟.  极化干涉合成孔径雷达图像信息提取技术的进展及未来, 电子与信息学报.
    [14] 席育孝, 杨汝良.  应用分布目标的多极化合成孔径雷达定标技术, 电子与信息学报.
    [15] 梁淮宁, 王建国, 黄顺吉.  快速搜索算法与极化合成孔径雷达三维成像, 电子与信息学报.
    [16] 王晓兰, 戴博伟, 杨汝良.  全极化合成孔径雷达多视图像的极化特征分析, 电子与信息学报.
    [17] 齐向阳, 朱敏慧, 白有天.  极化合成孔径雷达的模拟研究, 电子与信息学报.
    [18] 刘宏春, 杨汝良.  多极化合成孔径雷达数据伪彩色合成处理, 电子与信息学报.
    [19] 刘国庆, 黄顺吉, 熊红, A.Torre, F.Rubertone.  多视全极化合成孔径雷达图象的统计分析, 电子与信息学报.
    [20] 刘国庆, 熊红, 黄顺吉, A.Torre, F.Rubertone.  多视极化合成孔径雷达图象的分类和极化通道优化, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  516
    • HTML全文浏览量:  36
    • PDF下载量:  332
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-03-17
    • 修回日期:  2015-08-28
    • 刊出日期:  2015-12-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注