高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高铁基于毫米波的自适应波束分合传输方案

闫莉 方旭明

闫莉, 方旭明. 高铁基于毫米波的自适应波束分合传输方案[J]. 电子与信息学报, 2016, 38(1): 146-152. doi: 10.11999/JEIT150396
引用本文: 闫莉, 方旭明. 高铁基于毫米波的自适应波束分合传输方案[J]. 电子与信息学报, 2016, 38(1): 146-152. doi: 10.11999/JEIT150396
YAN Li, FANG Xuming. Adaptive Beam Splitting or Integrating Scheme for Railway Millimeter Wave Wireless Communications[J]. Journal of Electronics and Information Technology, 2016, 38(1): 146-152. doi: 10.11999/JEIT150396
Citation: YAN Li, FANG Xuming. Adaptive Beam Splitting or Integrating Scheme for Railway Millimeter Wave Wireless Communications[J]. Journal of Electronics and Information Technology, 2016, 38(1): 146-152. doi: 10.11999/JEIT150396

高铁基于毫米波的自适应波束分合传输方案

doi: 10.11999/JEIT150396
基金项目: 

国家973计划(2012CB316100),国家自然科学基金(61471303),中国铁路总公司科技研究开发计划(Z2014-X002)

Adaptive Beam Splitting or Integrating Scheme for Railway Millimeter Wave Wireless Communications

Funds: 

The National 973 Program of China (2012CB 316100), The National Natural Science Foundation of China (61471303), The Program for Development of Science and Technology of China Railway Corporation (Z2014- X002)

  • 摘要: 向拥有较宽连续频谱的高频频段扩展带宽成为未来高铁无线通信系统提升容量的有力手段,不过,需要采用大规模天线波束赋形技术克服高频频段路径损耗严重的缺陷。在高铁双车载台方案中,可以通过大规模天线阵列形成双波束传输提高系统容量。在对其传输性能进行分析后发现,双波束传输优化配置与列车的位置有关。基于此,论文提出自适应波束分合传输方案,当列车距离基站较远时,为了避免波束间的严重干扰,双波束合成为一个波束来覆盖两个接收端,实现接收分集,提高接收信号质量;当列车距离基站较近时,分裂成双波束,实现空间复用,提高系统容量及传输可靠性。数值仿真结果表明,所提方案可以适应列车运行位置,提升传输性能。
  • [1] 方旭明, 崔亚平, 闫莉, 等. 高铁移动通信系统关键技术的演进与发展[J]. 电子与信息学报, 2015, 37(1): 226-235. doi:  10.11999/JEIT141156.
    [2] FANG X M, CUI Y P, YAN L, et al. The evolution and development of key technologies of mobile communication systems for high-speed railway[J]. Journal of Electronics Information Technology, 2015, 37(1): 226-235. doi: 10.11999/ JEIT141156.
    [3] 张伟, 李斌, 刘云, 等. 60 GHz毫米波通信中上行链路混合波束赋形技术研究[J]. 电子与信息学报, 2012, 34(11): 2728-2733. doi:  10.3724/SP.J.1146.2012.00603.
    [4] ZHANG W, LI B, LIU Y, et al. Hybrid beamforming technology in 60 GHz millimeter wave uplink communication system[J]. Journal of Electronics Information Technology, 2012, 34(11): 2728-2733. doi: 10.3724/SP.J.1146.2012. 00603.
    [5] RAPPAPORT T S, GUTIERREZ F, Ben-Dor E, et al. Broadband millimeter-wave propagation measurements and models using adaptive beam antennas for outdoor urban cellular communications[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1850-1859.
    [6] KIM J and KIM I G. Distributed antenna system-based millimeter-wave mobile broadband communication system for high speed trains[C]. 2013 International Conference on ICT Convergence (ICTC), Jeju, Korea, 2013: 218-222.
    [7] SEUNG N C, DUKHYUN Y, Ilgyu K, et al. Uplink design of millimeter-wave mobile communication systems for high- speed trains[C]. IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 2014: 1-5.
    [8] HUR S, KIM T, LOVE D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks[J]. IEEE Transactions on Communications, 2013, 61(10): 4391-4403.
    [9] KHAN F, PI Z, and RAJAGOPAL S. Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication[C]. Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2012: 1517-1523.
    [10] 邹卫霞, 杜光龙, 李斌, 等. 60 GHz毫米波通信中一种新的波束搜索算法[J]. 电子与信息学报, 2012, 34(3): 683-688. doi:  10.3724/SP.J.1146.2011.00436.
    [11] ZOU W X, DU G L, LI B, et al. A novel beam search algorithm for 60 GHz millimeter wave communication[J]. Journal of Electronics Information Technology, 2012, 34(3): 683-688. doi:  10.3724/SP.J.1146.2011.00436.
    [12] GODARA L C. Applications of antenna arrays to mobile communications, Part I: Performance improvement, feasibility, and system considerations[J]. Proceedings of the IEEE, 1997, 85(7): 1031-1060.
    [13] GODARA L C. Application of antenna arrays to mobile communications, Part II: Beam-forming and direction-of- arrival considerations[J]. Proceedings of the IEEE, 1997, 85(8): 1195-1245.
    [14] LUO W T, FANG X M, CHENG M, et al. Efficient Multiple- Group Multiple-Antenna (MGMA) scheme for high-speed railway viaducts[J]. IEEE Transactions on Vehicular Technology, 2013, 62(6): 2558-2569.
    [15] CHENG M and FANG X M. Location information assisted opportunistic beamforming in LTE system for high speed railway[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(210): 1-7.
    [16] CHENG M, FANG X M, and LUO W T. Beamforming and positioning-assisted handover scheme for long-term evolution system in high-speed railway[J]. IET Communications, 2012, 6(15): 2335-2340.
    [17] R1-092552. Reporting of CQI/PMI/RI for LTE TDD dual-layer beamforming[S]. Nokia, Nokia Siemens Networks, 2009.
    [18] LUO W T, ZHANG R, and FANG X M. A CoMP soft handover scheme for LTE systems in high speed railway[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(196): 1-9.
    [19] YANG C, LU L, DI C, et al. An on-vehicle dual-antenna handover scheme for high-speed railway distributed antenna system[C]. IEEE 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu, China, 2010: 1-5.
    [20] 谢处方, 邱文杰. 天线原理与设计[M]. 西安: 西北电讯工程学院出版社, 1985: 93-102.
    [21] XIE C F and QIU W J. Antenna Theory and Design[M]. Xian: Northwest Telecommunication Engineering College Press, 1985: 93-102.
    [22] DU Q, WU G, YU Q, et al. ICI mitigation by Doppler frequency shift estimation and pre-compensation in LTE-R systems[C]. International Conference on Communications in China (ICCC), Beijing, China, 2012: 469-474.
    [23] GU J, ZHANG H, and YANG J. On reduction of inter-beam interference in beamforming of multiple beam array antennas [C]. 7th International Conference on Signal Processing (ICSP), Beijing, China, 2004: 463-466.
    [24] PROAKIS J and SALEHI M. Digital Communications[M]. New York: McGraw Hill, 2000: 122-127.
  • [1] 郑占旗, 阎跃鹏, 张立军, 王宇灏, 张金玲, 慕福奇.  增加副瓣抑制机制的阵列天线波束赋形遗传算法研究, 电子与信息学报. doi: 10.11999/JEIT160466
    [2] 马晓峰, 陆乐, 盛卫星, 韩玉兵, 张仁李.  干扰子空间正交投影快速零陷跟踪波束赋形算法, 电子与信息学报. doi: 10.11999/JEIT151438
    [3] 吴旭姿, 刘峥, 谢荣.  基于俯仰频率分集技术的波束形成方法, 电子与信息学报. doi: 10.11999/JEIT160667
    [4] 游鹏飞, 刘颜回, 黄鑫, 朱春辉, 柳清伙.  基于改进GA-FFT综合含互耦效应的不等间隔阵列赋形方向图, 电子与信息学报. doi: 10.11999/JEIT151189
    [5] 张伟, 李斌, 刘云, 赵成林.  60 GHz毫米波通信中上行链路混合波束赋形技术研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00603
    [6] 邹卫霞, 杜光龙, 李斌, 崔志芳, 胡玉聪, 张芳.  60 GHz毫米波通信中一种新的波束搜索算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00436
    [7] 刘锋, 徐金梧, 阳建宏, 黎敏.  工业环境无线传感器网络分集技术, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01524
    [8] 傅友华, 赵睿, 杨绿溪.  基于最优波束成型的中继增强型无线通信系统的性能分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01089
    [9] 吴敏, 沈超, 裘正定.  时间相干信道下波束赋形系统的有限反馈方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2008.01504
    [10] 曾二林, 朱世华, 廖学文, 王君.  空分复用多输入多输出系统中的分组多用户分集, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.00766
    [11] 陈波, 杨光, 常永宇, 杨大成.  智能天线非理想波束赋形对TD-SCDMA系统性能的影响, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.01590
    [12] 黄永明, 许道峰, 杨绿溪.  多用户MIMO系统下行链路的随机多波束复用技术, 电子与信息学报. doi: 10.3724/SP.J.1146.2006.01117
    [13] 黄丘林, 史小卫.  MIMO系统中分集增益和空间复用增益的折衷关系, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.00964
    [14] 肖疆, 朱敏慧, 范景云.  用于机载SAR的距离向波束赋形微带天线阵的研究, 电子与信息学报.
    [15] 曾云宝, 赵义忠, 朱永芬, 王文博.  一种基于特征值分布的波束赋形方案, 电子与信息学报.
    [16] 许宏吉, 刘琚.  结合波束形成与发射分集的闭环下行发射方案, 电子与信息学报.
    [17] 杜江, 彭启琮, 钟俊.  用于MIMO-OFDM无线通信系统的一种新的自适应半盲波束形成算法, 电子与信息学报.
    [18] 张亦希, 傅君眉, 汪文秉.  卫星阵馈反射面多波束天线赋形波束的性能分析, 电子与信息学报.
    [19] 夏文, 王华芝, 马文华.  卫星反射面天线波束赋形的研究, 电子与信息学报.
    [20] 舒士畏.  傅氏变换迭代法波束赋形的精度和效率, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  698
    • HTML全文浏览量:  36
    • PDF下载量:  548
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-08
    • 修回日期:  2015-10-10
    • 刊出日期:  2016-01-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注