高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不完全乔列斯基分解共轭梯度法在磁感应成像三维有限元正问题中的应用

宣杨 王旭 刘承安 杨丹 张志美

宣杨, 王旭, 刘承安, 杨丹, 张志美. 不完全乔列斯基分解共轭梯度法在磁感应成像三维有限元正问题中的应用[J]. 电子与信息学报, 2016, 38(1): 187-194. doi: 10.11999/JEIT150437
引用本文: 宣杨, 王旭, 刘承安, 杨丹, 张志美. 不完全乔列斯基分解共轭梯度法在磁感应成像三维有限元正问题中的应用[J]. 电子与信息学报, 2016, 38(1): 187-194. doi: 10.11999/JEIT150437
XUAN Yang, WANG Xu, LIU Cheng’an, YANG Dan, ZHANG Zhimei. Incomplete Cholesky Conjugate Gradient Method for the Three- dimensional Forward Problem in Magnetic Induction Tomography Using Finite Element Method[J]. Journal of Electronics and Information Technology, 2016, 38(1): 187-194. doi: 10.11999/JEIT150437
Citation: XUAN Yang, WANG Xu, LIU Cheng’an, YANG Dan, ZHANG Zhimei. Incomplete Cholesky Conjugate Gradient Method for the Three- dimensional Forward Problem in Magnetic Induction Tomography Using Finite Element Method[J]. Journal of Electronics and Information Technology, 2016, 38(1): 187-194. doi: 10.11999/JEIT150437

不完全乔列斯基分解共轭梯度法在磁感应成像三维有限元正问题中的应用

doi: 10.11999/JEIT150437
基金项目: 

中央高校基本科研业务费专项(N130404004)

Incomplete Cholesky Conjugate Gradient Method for the Three- dimensional Forward Problem in Magnetic Induction Tomography Using Finite Element Method

Funds: 

The Fundmental Reseach Funds for the Central Universities of China (N130404004)

  • 摘要: 磁感应成像(MIT)3维正问题中,直接求解法计算有限元方程组时,计算速度慢且因舍入误差造成计算结果不正确。该文为了解决这一问题,采用不完全乔列斯基分解共轭梯度(ICCG)迭代求解法。基于ANSYS平台建立有限元数值模型,采用ICCG法迭代求解。通过仿真实验获得设定收敛容差的最优值。对仿真结果进行对比,与直接求解法、雅克比共轭梯度(JCG)法相比,ICCG法计算速度快、稳健性高。计算结果表明ICCG法受网格粗细影响小,能够正确求解磁感应成像3维正问题。
  • [1] WEI H Y and SOLEIMANI M. Electromagnetic tomography for medical and industrial applications: challenges and opportunities[J]. Proceedings of the IEEE, 2013, 101(3): 559-565.
    [2] LU Ma, HUNT Andy, and SOLEIMANI M. Experimental evaluation of conductive flow imaging using magnetic induction tomography[J]. International Journal of Multiphase Flow, 2015, 72: 198-209.
    [3] JIN Gui, SUN Jian, QIN Mingxin, et al. A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift[J]. Biosensors and Bioelectronics, 2014, 52: 374-378.
    [4] 王雷, 刘锐岗, 周伟, 等. 磁感应断层成像硬件系统与实验的研究进展[J]. 医疗卫生装备, 2013, 34(2): 85-88.
    [5] WANG L, LIU R G, ZHOU W, et al. Research progress of magnetic induction tomography system and experimental results[J]. Chinese Medical Equipment Journal, 2013, 34(2): 85-88.
    [6] DARRER B J, WATSON J C, BARTLETT P, et al. Toward an automated setup for magnetic induction tomography[J]. IEEE Transactions on Magnetics, 2015, 51(1): 6500104.
    [7] MERWA R, HOLLAUS K, BRANDSTATTER B, et al. Volumetric magnetic induction tomography[J]. Measurement Science and Technology, 2012, 23(5): 055401.
    [8] MERWA R, HOLLAUS K, BRANDSTATTER B, et al. Numerical solution of the general 3D eddy current problem for magnetic induction tomography (spectroscopy)[J]. Physiological Measurement, 2003, 24: 545-554.
    [9] HOLLAUS K, MAC, MERWA R, et al. Numerical simulation of the eddy current problem in magnetic induction tomography for biomedical applications by edge elements[J]. IEEE Transactions on Magnetics, 2004, 40(2): 623-626.
    [10] 刘国强, 王涛, 蒙萌, 等. 用棱单元方法求解磁感应成像正问题[J]. 中国生物医学工程, 2006, 25(2): 163-165.
    [11] LIU G Q, WANG T, MENG M, et al. Using edge element method to solve the forward problem in magnetic induction tomography[J]. China Medical Engineering, 2006, 25(2): 163-165.
    [12] 何为, 宋晓栋, 张晓勇, 等. 正弦均匀磁场激励磁感应成像正问题的棱单元法. 重庆大学学报, 2012, 35(10): 159-164.
    [13] HE W, SONG X D, ZHANG X Y, et al. The edge element method in the forward problem of magnetic induction tomography with homogeneous sinusoidal magnetic excitation[J]. Journal of Chongqing University, 2012, 35(10): 159-164.
    [14] 柯丽, 赵璐璐, 杜强, 等. 颅脑血肿 MIT 涡流场仿真与分析[J]. 系统仿真学报, 2014, 26(3): 517-522.
    [15] KE L, ZHAO L L, DU Q, et al. Simulation and analysis of cerebral hematoma eddy current field in magnetic induction tomography[J]. Journal of System Simulation, 2014, 26(3): 517-522.
    [16] ZHAO Q, CHEN G, HAO J N, et al. Numerical approach for the sensitivity of a high-frequency magnetic induction tomography system based on boundary elements and perturbation method[J]. Measurement Science and Technology, 2013, 4: 074004.
    [17] 蒙萌, 江凌彤, 李士强, 等. 三维磁共振磁感应成像重建方法研究[J]. 中国生物医学工程学报, 2008, 27(5): 650-653.
    [18] MENG M, JIANG L T, LI S Q, et al. 3-D reconstruction algorithm of magnetic resonance magnetic induction tomography[J]. Chinese Journal of Biomedical Engineering, 2008, 27(5): 650-653.
    [19] SOLEIMANI M, WILLIAM R, and LIONHEART B. Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method[J]. IEEE Transactions on Medical Imaging, 2006, 25(12): 1521-1530.
    [20] SOLEIMANI1 M, LIONHEART W R B, PEYTON1 A J, et al. A three-dimensional inverse finite-element method applied to experimental eddy-current imaging Data[J]. IEEE Transactions on Magnetics, 2006, 42(5): 1560-1567.
    [21] 林莘, 刘志刚. ICCG算法在SF6罐式高压断路器三维电场有限元计算中的应用[J]. 中国电机工程学报, 2001, 21(2): 21-24.
    [22] LIN X and LIU Z G. The application of ICCG algorithm in the three dimensional electric field calculation of SF6 tank-type circuit breaker[J]. Proceedings of the CSEE, 2001, 21(2): 21-24.
    [23] 谢德馨, 杨仕友. 工程电磁场数值分析与综合[M]. 北京: 机械工业出版社, 2008: 84-85.
    [24] XIE D X and YANG S Y. Numerical Analysis and Synthesis of Engineering Electromagnetic Field[M]. Beijing: China Machine Press, 2008: 84-85.
    [25] KAMEARI A. Symetric second order edge elements for triangles and terahedra[J]. IEEE Transactions on Magnetics, 1999, 35: 1394-1397.
    [26] GRIFFITHS H, STEWART W R, and GOUGH W. Magnetic induction tomography a measuring system for biological tissues[J]. Annals New York Academy of Sciences, 1999, 20: 335-345.
    [27] HERMANN S, HELMUT K L, and JAVIER R. Magnetic induction tomography: hardware for multi-frequency measurement in biological tissues[J]. Physiological Measurement, 2001, 22: 131-146.
  • [1] 魏宏安, 吴小清, 张昂.  基于能量误差的人体有限元模型网格剖分优化研究, 电子与信息学报. doi: 10.11999/JEIT190765
    [2] 罗海军, 廖勇, 潘海涛, 温开旭.  导数法峰值锐化算法提高磁感应成像图像分辨率, 电子与信息学报. doi: 10.11999/JEIT171102
    [3] 王为, 覃宇建, 刘培国, 周东明.  基于高阶时域有限差分法与改进节点分析法混合求解复杂传输线网络瞬态响应, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00160
    [4] 徐立, 杨中海, 李建清, 李斌.  任意行波管慢波结构中导体和介质损耗的三维有限元分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01332
    [5] 于云龙, 胡权, 黄桃, 李斌.  周期永磁聚焦系统二维二次有限元法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00795
    [6] 吕轶, 王旭, 杨丹, 金晶晶.  一种磁感应成像中生物组织涡流信号的新型测量方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01422
    [7] 胡权, 黄桃, 杨中海, 李斌, 李建清.  三维电子光学模拟器二阶有限元方法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01049
    [8] 杨成福, 黄铭, 杨晶晶, 印金国, 彭金辉.  基于超材料的正多边形电磁波聚焦器设计, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01027
    [9] 武楠, 冯大政, 刘宝泉.  一种基于枝切法和有限元法的干涉SAR合成相位展开方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2005.01119
    [10] 邢锋, 任列辉, 徐诚, 周斌, 宋文淼.  基于矢量波函数空间算子理论的波导系统有限元分析, 电子与信息学报.
    [11] 许锋, 洪伟, 周后型.  求解三维问题的区域分解时域有限差分方法, 电子与信息学报.
    [12] 张利军, 徐善驾.  平板介质波导不连续性问题的有限元分析, 电子与信息学报.
    [13] 赵策洲, 刘恩科, 李国正, 高勇, 刘西钉.  SOI结构M-Z型调制器的有限元法分析, 电子与信息学报.
    [14] 徐善驾, 张跃江.  任意曲线槽波导色散和损耗特性的高次有限元分析, 电子与信息学报.
    [15] 徐善驾, 盛新庆.  任意横截面形状同轴线的高次有限元分析, 电子与信息学报.
    [16] 顾聪, 王德宁, 王渭源.  i-GaAlAs/GaAs HIGFETs器件参数的有限元分析, 电子与信息学报.
    [17] 李文臣.  用矩形截面环单元计算轴对称场的有限元法, 电子与信息学报.
    [18] 孙乃华.  实现Ricatti变换的有限元网格的自动剖分, 电子与信息学报.
    [19] 徐善驾.  非均匀介质填充波导本征值问题的有限元分析, 电子与信息学报.
    [20] 徐善驾.  波导本征值问题的有限元分析, 电子与信息学报.
  • 加载中
  • 计量
    • 文章访问数:  458
    • HTML全文浏览量:  48
    • PDF下载量:  478
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-15
    • 修回日期:  2015-08-25
    • 刊出日期:  2016-01-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注