高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空谱联合的多假设预测高光谱图像压缩感知重构算法

王丽 冯燕

王丽, 冯燕. 基于空谱联合的多假设预测高光谱图像压缩感知重构算法[J]. 电子与信息学报, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
引用本文: 王丽, 冯燕. 基于空谱联合的多假设预测高光谱图像压缩感知重构算法[J]. 电子与信息学报, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
Wang Li, Feng Yan. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction[J]. Journal of Electronics and Information Technology, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480
Citation: Wang Li, Feng Yan. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction[J]. Journal of Electronics and Information Technology, 2015, 37(12): 3000-3008. doi: 10.11999/JEIT150480

基于空谱联合的多假设预测高光谱图像压缩感知重构算法

doi: 10.11999/JEIT150480
基金项目: 

国家自然科学基金(61071171)和西北工业大学博士论文创新基金(CX201424)

Compressed Sensing Reconstruction of Hyperspectral Images Based on Spatial-spectral Multihypothesis Prediction

Funds: 

The National Natural Science Foundation of China (61071171)

  • 摘要: 为充分利用高光谱图像的空间相关性和谱间相关性,该文提出一种基于空谱联合的多假设预测压缩感知重构算法。将高光谱图像分组为参考波段图像和非参考波段图像,参考波段图像利用光滑Landweber投影算法重构,对于非参考波段图像,引入空谱联合的多假设预测模型,提高重构精度。非参考波段图像中每个图像块的预测值不仅来自非参考波段图像未经预测的初始重构值的相邻图像块,而且来自参考波段重构图像相应位置及其邻近的图像块,利用预测值得到测量域中的残差,然后对残差进行重构并对预测值进行修正,此残差比原图像更稀疏,且算法采用迭代方式提高重构图像的精度。借助Tikhonov正则化方法求解多假设预测的权重系数,并基于结构相似性判断是否改变多假设预测搜索窗口大小,最后利用交叉验证计算重构算法终止迭代的判据参数。实验结果表明,所提算法优于仅利用空间相关性或谱间相关性进行预测和不预测的重构算法,其重构图像的峰值信噪比提高2 dB以上。
  • [1] Heras D B, Argello F, and Quesada-Barriuso P. Exploring ELM-based spatialspectral classification of hyperspectral images[J]. International Journal of Remote Sensing, 2014, 35(2): 401-423.
    [2] Zhao C, Li X, Ren J, et al.. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery[J]. International Journal of Remote Sensing, 2013, 34(24): 8669-8684.
    [3] Tan C, Samanta A, Jin X, et al.. Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies[J]. International Journal of Remote Sensing, 2013, 34(24): 8789-8802.
    [4] Xie X, Li Y, Li R, et al.. Hyperspectral characteristics and growth monitoring of rice (Oryza sativa) under asymmetric warming[J]. International Journal of Remote Sensing, 2013, 34(23): 8449-8462.
    [5] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [6] Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [7] Provost J and Lesage F. The application of compressed sensing for photo-acoustic tomography[J]. IEEE Transactions on Medical Imaging, 2009, 28(4): 585-594.
    [8] Riccardo M, Giorao Q, Michele R, et al.. A Bayesian analysis of compressive sensing data recovery in wireless sensor networks[C]. International Conference on Ultra Modern Telecommunications&Workshops, St. Petersburg, 2009: 1-6.
    [9] Shu X and Ahuja N. Imaging via three-dimensional compressive sampling[C]. Paper presented at the International Conference on Computer Vision (ICCV), Barcelona, ES, 2011: 439-446.
    [10] 沈志博, 董春曦, 黄龙, 等. 基于压缩感知的宽频段二维DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2935-2941.
    [11] Shen Zhi-bo, Dong Chun-xi, Huang Long, et al.. Broadband 2-D DOA estimation based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(12): 2935-2941.
    [12] 王军, 闫锋刚, 马文洁, 等. 基于Laplace先验的Bayes压缩感知波达方向估计[J]. 电子与信息学报, 2015, 37(4): 817-823.
    [13] Wang Jun, Yan Feng-gang, Ma Wen-jie, et al.. Direction-of-arrival estimation using Laplace prior based on bayes compressive sensing[J]. Journal of Electronics Information Technology, 2015, 37(4): 817-823.
    [14] Yin J, Sun J, and Jia X. Sparse analysis based on generalized Gaussian model for spectrum recovery with compressed sensing theory[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2752-2759.
    [15] Cands E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
    [16] Figueiredo M, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598.
    [17] Baron S, Sarvoham R, and Baraniuk R G. Bayesian compressive sensing via belief propagation[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 269?280.
    [18] Mallat S G and Zhang Z. Matching pursuits with time- frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    [19] Fowler J E. Compressive-projection principal component analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2230-2242.
    [20] Gan L. Block Compressed sensing of natural images[C]. 15th International Conference on Digital Signal Processing, Cardiff, Wales, UK, 2007: 403-406.
    [21] Ji S, Dunson D, and Carin L. Multitask compressive sensing[J]. IEEE Transaction on Signal Processing, 2009, 57(1): 92-106.
    [22] Claudia V C, Henry A, and Gonzalo R A. Fast lapped block reconstructions in compressive spectral imaging[J]. Applied Optics, 2013, 52(10): D32-45.
    [23] Henry A, Hoover R, Wu Y, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12-21.
    [24] 刘海英, 吴成柯, 吕沛, 等. 基于谱间预测和联合优化的高光谱压缩感知图像重构[J]. 电子与信息学报, 2011, 33(9): 2248-2252.
    [25] Liu Hai-ying, Wu Cheng-ke, L Pei, et al.. Compressed hyperspectral image sensing reconstruction based on interband prediction and joint optimization[J]. Journal of Electronics Information Technology, 2011, 33(9): 2248-2252.
    [26] 刘海英, 李云松, 吴成柯, 等. 一种高重构质量低复杂度的高光谱图像压缩感知[J]. 西安电子科技大学学报(自然科学版), 2011, 38(3): 37-41.
    [27] Liu Hai-ying, Li Yun-song, Wu Cheng-ke, et al.. Compressed hyperspectral image sensing based on interband prediction[J]. Journal of Xidian University (Natural Science), 2011, 38(3): 37-41.
    [28] Mun S and Fowler J E. Residual reconstruction for blocked-based compressed sensing of video[C]. Paper presented at the Data Compression Conference (DCC), Snowbird, UT, 2011: 183-192.
    [29] 李然, 干宗良, 崔子冠, 等. 联合时空特征的视频分块压缩感知重构[J]. 电子与信息学报, 2014, 36(2): 285-292.
    [30] Li Ran, Gan Zong-liang, Cui Zi-guan, et al.. Block compressed sensing reconstruction of video combined with temporal-spatial characteristics[J]. Journal of Electronics Information Technology, 2014, 36(2): 285-292.
    [31] 贾应彪, 冯燕, 袁晓玲, 等. 高光谱图像分块压缩感知采样及谱间预测重构[J]. 应用科学学报, 2014, 32(3): 281-286.
    [32] Jia Ying-biao, Feng Yan, Yuan Xiao-ling, et al.. Block compressed sensing sampling and reconstruction using spectral prediction for hyperspectral images[J]. Journal of Applied Science, 2014, 32(3): 281-286.
    [33] Chen C, Tramel E W, and Fowler J E. Compressed-sensing recovery of images and video using multihypothesis predictions[C]. Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2011: 1193-1198.
    [34] Chen C, Li W, Tramel E W, et al.. Reconstruction of hyperspectral imagery from random projections using multihypothesis prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 365-374.
    [35] Fowler J E, Mun S, and Tramel E W. Block-based compressed sensing of images and video[J]. Foundations and Trends in Signal Processing, 2012, 4(4): 297-416.
    [36] Mun S and Fowler J E. Block compressed sensing of images using directional transforms[C]. Paper presented at the International Conference on Image Processing (ICIP), Cairo, EG, 2009: 3021-3024.
    [37] Johnson W B and Lindenstrauss J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathematics, 1984, 26(1): 189-206.
    [38] Tikhonov A N and Arsenin V Y. Solutions of Ill-posed Problems[M]. Washington, DC, USA: V. H. Winston Sons, 1977: 45-87.
  • [1] 王钢, 周若飞, 邹昳琨.  基于压缩感知理论的图像优化技术, 电子与信息学报. doi: 10.11999/JEIT190669
    [2] 赵辉, 杨晓军, 张静, 孙超, 张天骐.  基于结构组全变分模型的图像压缩感知重建, 电子与信息学报. doi: 10.11999/JEIT190243
    [3] 吴新杰, 闫诗雨, 徐攀峰, 颜华.  基于稀疏度自适应压缩感知的电容层析成像图像重建算法, 电子与信息学报. doi: 10.11999/JEIT170794
    [4] 高放, 孙长建, 邵庆龙, 郭树旭.  基于K-均值聚类和传统递归最小二乘法的高光谱图像无损压缩, 电子与信息学报. doi: 10.11999/JEIT151439
    [5] 许宁, 尤红建, 耿修瑞, 曹银贵.  基于光谱相似度量的高光谱图像多任务联合稀疏光谱解混方法, 电子与信息学报. doi: 10.11999/JEIT160011
    [6] 李秋富, 谌德荣, 何光林, 冯辉, 杨柳心.  最大误差可控的高光谱图像聚类压缩算法, 电子与信息学报. doi: 10.11999/JEIT140451
    [7] 霍雷刚, 冯象初.  基于主成分分析和字典学习的高光谱遥感图像去噪方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01840
    [8] 王忠良, 冯燕, 贾应彪.  基于线性混合模型的高光谱图像谱间压缩感知重构, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01511
    [9] 贾应彪, 冯燕, 王忠良, 魏江.  基于谱间结构相似先验的高光谱压缩感知重构, 电子与信息学报. doi: 10.3724/SP.J.1146.2013.01132
    [10] 孙玉宝, 李欢, 吴敏, 吴泽彬, 贺金平, 刘青山.  基于图稀疏正则化多测量向量模型的高光谱压缩感知重建, 电子与信息学报. doi: 10.3724/SP.J.1146.2014.00566
    [11] 杨真真, 杨震.  压缩感知中基于快速交替方向乘子法的l0-正则化信号重构, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00921
    [12] 练秋生, 张红卫, 陈书贞, 李林.  融合图像块低维流形特性与解析轮廓波稀疏性的压缩成像算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00424
    [13] 崔子冠, 朱秀昌.  基于结构相似的H.264主观率失真性能改进机制, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00586
    [14] 刘建军, 吴泽彬, 韦志辉, 肖亮, 孙乐.  基于空间相关性约束稀疏表示的高光谱图像分类, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00577
    [15] 赵春晖, 刘巍.  基于交织抽取与分块压缩感知策略的图像多描述编码方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00400
    [16] 崔子冠, 朱秀昌.  H.264结构相似性最优的宏块层码率控制算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01128
    [17] 宋娟, 吴成柯, 张静, 刘海英.  基于分类和陪集码的高光谱图像无损压缩, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00274
    [18] 刘海英, 吴成柯, 吕沛, 宋娟.  基于谱间预测和联合优化的高光谱压缩感知图像重构, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01343
    [19] 练秋生, 王艳.  基于双树小波通用隐马尔可夫树模型的图像压缩感知, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01153
    [20] 刘亚新, 赵瑞珍, 胡绍海, 姜春晖.  用于压缩感知信号重建的正则化自适应匹配追踪算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2009.01623
  • 加载中
  • 计量
    • 文章访问数:  460
    • HTML全文浏览量:  22
    • PDF下载量:  508
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-04-28
    • 修回日期:  2015-08-21
    • 刊出日期:  2015-12-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注