高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海杂波AR谱多重分形特性及微弱目标检测方法

范一飞 罗丰 李明 胡冲 陈帅霖

范一飞, 罗丰, 李明, 胡冲, 陈帅霖. 海杂波AR谱多重分形特性及微弱目标检测方法[J]. 电子与信息学报, 2016, 38(2): 455-463. doi: 10.11999/JEIT150581
引用本文: 范一飞, 罗丰, 李明, 胡冲, 陈帅霖. 海杂波AR谱多重分形特性及微弱目标检测方法[J]. 电子与信息学报, 2016, 38(2): 455-463. doi: 10.11999/JEIT150581
FAN Yifei, LUO Feng, LI Ming, HU Chong, CHEN Shuailin. The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background[J]. Journal of Electronics and Information Technology, 2016, 38(2): 455-463. doi: 10.11999/JEIT150581
Citation: FAN Yifei, LUO Feng, LI Ming, HU Chong, CHEN Shuailin. The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background[J]. Journal of Electronics and Information Technology, 2016, 38(2): 455-463. doi: 10.11999/JEIT150581

海杂波AR谱多重分形特性及微弱目标检测方法

doi: 10.11999/JEIT150581
基金项目: 

国家部委基金(4010101030101)

The Multifractal Properties of AR Spectrum and Weak Target Detection in Sea Clutter Background

Funds: 

The National Ministries Fund (4010101030101)

  • 摘要: 该文研究了海杂波功率谱的多重分形特性。为了克服频谱傅里叶分析的缺点,用现代谱估计的方法来计算海杂波的功率谱。AR模型是一个线性预测模型,它通过序列的自相关函数矩阵来估计功率谱,并且具有更精确的频谱分辨率。该文主要分析基于AR谱估计的海杂波功率谱的多重分形特性,以及在微弱目标检测中的应用。首先,以分数布朗运动(FBM)模型为例,证明其功率谱具有多重分形特性。其次,根据X波段雷达的实测海杂波数据,通过多重去趋势分析法(MF-DFA)验证了海杂波AR谱的多重分形特性。最后,分析了海杂波AR谱的广义Hurst指数以及影响参数,并提出一种基于局部AR谱广义Hurst指数的目标检测方法。实验结果表明,该种检测方法具有海杂波背景下微弱目标检测的能力。与现有的分形检测方法和传统的CFAR检测方法对比,该算法在低信杂比情况下具有较好的检测性能。
  • [1] MANDELBROT B. The Fractal Geometry of Nature [M]. New York: WH Freeman, 1982: 1-63.
    [2] LO T, LEUNG H, HAYKIN S, et al. Fractal characterisation of sea scattered signals and detection of sea-surface targets[J]. IEE Proceedings F, Radar and Signal Processing, 1993, 140(4): 243-250.
    [3] 孙康, 金钢, 朱晓华. 基于波动分析的海上小目标检测[J]. 电子与信息学报, 2013, 35(4): 882-887. doi: 10.3724/SP.J.1146. 2012.00927.
    [4] SUN Kang, JIN Gang, and ZHU Xiaohua. Small target detection within sea clutter based on the fluctuation analysis[J]. Journal of Electronics Information Technology, 2013, 35(4): 882-887. doi:  10.3724/SP.J.1146.2012.00927.
    [5] DU Gan and ZHANG Shouhong. Detection of sea-surface radar targets based on multifractal analysis[J]. Electronics Letters, 2000, 36(13): 1144-1145.
    [6] 石志广, 周剑雄, 付强. 基于多重分形模型的海杂波特性分析与仿真[J]. 系统仿真学报, 2006, 18(8): 2289-2292.
    [7] SHI Zhiguang, ZHOU Jianxiong, and FU Qiang. Sea clutter characteristic analysis and simulation based on multi-fractal model[J]. Journal of System Simulation, 2006, 18(8): 2289-2292.
    [8] 关键, 刘宁波, 张建, 等. 海杂波的多重分形关联特性与微弱目标检测[J]. 电子与信息学报, 2010, 32(1): 54-61. doi:  10.3724/SP.J.1146.2008.00980.
    [9] GUAN Jian, LIU Ningbo, ZHANG Jian, et al. Multifractal correlation characteristic of real sea clutter and low- observable targets detection[J]. Journal of Electronics Information Technology, 2010, 32(1): 54-61. doi: 10.3724/ SP.J.1146.2008.00980.
    [10] 孙康, 金刚, 朱晓华, 等. 基于Q-MMSPF的海杂波多重分形互相关分析及目标检测[J]. 国防科技大学学报, 2013, 35(3): 170-175.
    [11] SUN Kang, JIN Gang, ZHU Xiaohua, et al. Multifractal cross-correlation analysis of sea clutter and target detection based on Q-MMSPF[J]. Journal of National University of Defense Technology, 2013, 35(3): 170-175.
    [12] HU J, TUNG, W W, and GAO J B. Detection of low observable targetswithin sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas Propagation, 2006, 54(1): 135-143.
    [13] LUO F, ZHANG D T, and ZHANG B. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1295-1299.
    [14] 王福友, 罗钉, 季亚新, 等. 海杂波多分形特性分析及小目标检测技术研究[J]. 信号处理, 2013, 29(2): 239-248.
    [15] WANG Fuyou, LUO Ding, JI Yaxin, et al. Multifractal analysis of sea clutter and small target detection[J]. Journal of Signal Processing, 2013, 29(2): 239-248.
    [16] 刘宁波, 黄勇, 关键, 等. 实测海杂波频域分形特性分析[J]. 电子与信息学报, 2012, 34(4): 929-935. doi: 10.3724/SP.J. 1146.2011.00856.
    [17] LIU Ningbo, HUANG Yong, GUAN Jian, et al. Fractal analysis of real sea clutter in frequency domain[J]. Journal of Electronics Information Technology, 2012, 34(4): 929-935. doi:  10.3724/SP.J.1146.2011.00856.
    [18] 刘宁波, 关键, 宋杰, 等. 海杂波频谱多重分形特性分析[J]. 中国科学: 信息科学, 2013, 43(6): 768-783.
    [19] LIU Ningbo, GUAN Jian, SONG Jie, et al. Multifractal property of sea clutter frequency spectrum[J]. Science China: Information Sciences, 2013, 43(6): 768-783.
    [20] 陈小龙, 刘宁波, 宋杰, 等. 海杂波FRFT域分形特征判别及动目标检测方法[J]. 电子与信息学报, 2011, 33(4): 823-830. doi:  10.3724/SP.J.1146.2010.00486.
    [21] CHEN Xiaolong, LIU Ningbo, SONG Jie, et al. Fractal feature discriminant of swa clutter in FRFT domain and moving target detection algorithm[J]. Journal of Electronics Information Technology, 2011, 33(4): 823-830. doi:  10.3724/SP.J.1146.2010.00486.
    [22] 刘宁波, 关键, 王国庆, 等. 基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J]. 电子学报, 2013, 41(9): 1847-1853.
    [23] LIU Ningbo, GUAN Jian, WANG Guoqing, et al. Target detection within sea clutter based on multi-scale Hurst exponent in FRFT domain[J]. Acta Electronica Sinica, 2013, 41(9): 1847-1853.
    [24] 宋杰, 刘宁波, 王国庆, 等. 海杂波FRFT谱的近似分形特性与目标检测[J]. 宇航学报, 2013, 34(10): 1394-1402.
    [25] SONG Jie, LIU Ningbo, WANG Guoqing, et al. Approximate fractality of sea clutter FRFT spectrum and target detection[J]. Journal of Astronautics, 2013, 34(10): 1394-1402.
    [26] 刘宁波, 王国庆, 包中华, 等. 海杂波FRFT谱的多重分形特性与目标检测[J]. 信号处理, 2013, 29(1): 1-8.
    [27] LIU Ningbo, WANG Guoqing, BAO Zhonghua, et al. Multifractal properties of sea clutter FRFT spectrum for target detection[J]. Journal of Signal Processing, 2013, 29(1): 1-8.
    [28] GAO J B, CAO Y, and LEE J M. Principal component analysis of noise [J]. Physics Letters A, 2003, 314(5/6): 392-400.
    [29] CHANG Y C and CHANG S. A fast estimation algorithm on the Hurst parameter of discrete-time fractional Brownian motion[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 554-559.
    [30] KIM T S and KIM S. Singularity spectra of fractional Brownian motions as a multi-fractal[J]. Chaos Solitons Fractals, 2004, 19(3): 613-619.
    [31] NOHAJA T J and HAYKIN S. AR-based growler detection in sea clutter[J]. IEEE Transactions on Signal Processing, 1993, 41(3): 1259-1270.
    [32] MANDELBROT B and VAN NESS J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4): 422-437.
    [33] KANTELHARDT J W, ZSCHIEGNER S A, KOSCIELNY- BUNDE E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.
    [34] DROSOPOULOS A. Description of the OHGR database[R]. Technical Note. 94-14, Defence Research Establishment, Ottawa, 1994: 1-30.
    [35] 何友, 关键, 彭应宁. 雷达自动检测与恒虚警处理[M]. 北京: 清华大学出版社, 1999: 230-268.
    [36] HE You, GUAN Jian, and PENG Yingning. Automatic Radar Detection and CFAR Techniques[M]. Beijing: Tsinghua University Press, 1999: 230-268.
  • [1] 罗忠涛, 严美慧, 卢琨, 何子述.  超视距雷达海杂波与干扰信号的多域特征与海杂波检测, 电子与信息学报. doi: 10.11999/JEIT200655
    [2] 张坤, 水鹏朗, 王光辉.  相参雷达K分布海杂波背景下非相干积累恒虚警检测方法, 电子与信息学报. doi: 10.11999/JEIT190441
    [3] 施赛楠, 水鹏朗, 刘明.  基于复合高斯杂波纹理结构的相干检测, 电子与信息学报. doi: 10.11999/JEIT151194
    [4] 张林, 李秀友, 刘宁波, 关键.  基于分形特性改进的EMD目标检测算法, 电子与信息学报. doi: 10.11999/JEIT150731
    [5] 刘明, 水鹏朗.  基于功率中值和归一化采样协方差矩阵的自适应匹配滤波检测器, 电子与信息学报. doi: 10.11999/JEIT140900
    [6] 刘明, 水鹏朗.  海杂波背景下的组合自适应GLRT-LTD, 电子与信息学报. doi: 10.11999/JEIT150588
    [7] 孙康, 金钢, 王超宇, 马超伟, 钱卫平, 高梅国.  扫描模式下海杂波的多分形布朗运动模型, 电子与信息学报. doi: 10.11999/JEIT140730
    [8] 基于N分随机乘法模型的多重分形海杂波仿真, 电子与信息学报. doi: 10.11999/JEIT141042
    [9] 郑作虎, 王首勇.  基于Alpha稳定分布杂波模型的雷达目标检测方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2014.00072
    [10] 赵宜楠, 李风从, 尹彬.  严重拖尾复合高斯杂波中目标的自适应极化检测, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00840
    [11] 孙康, 金钢, 朱晓华.  基于波动分析的海上小目标检测, 电子与信息学报. doi: 10.3724/SP.J.1146.2012.00927
    [12] 李拥军, 曾标, 徐克付, 李阳.  复杂背景下基于贝叶斯-全概率联合估计的前景检测, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00626
    [13] 刘宁波, 黄勇, 关键, 何友.  实测海杂波频域分形特性分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00856
    [14] 张建, 关键, 董云龙, 何友.  基于局部Hilbert谱平均带宽的微弱目标检测算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00091
    [15] 孙康, 金钢, 朱晓华.  基于半方差函数的海杂波长相关特征分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.01341
    [16] 武鹏, 王俊, 王文光.  基于极化特征分解的海上小目标检测算法研究, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00678
    [17] 关键, 张建.  基于固有模态能量熵的微弱目标检测算法, 电子与信息学报. doi: 10.3724/SP.J.1146.2011.00147
    [18] 杨勇, 冯德军, 王雪松, 张文明, 肖顺平.  低空雷达导引头海面目标检测性能分析, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.01407
    [19] 陈小龙, 刘宁波, 宋杰, 关键, 何友.  海杂波FRFT域分形特征判别及动目标检测方法, 电子与信息学报. doi: 10.3724/SP.J.1146.2010.00486
    [20] 肖慧, 胡卫东, 郁文贤.  基于二次混频DPT的LFMCW雷达多目标检测和参数估计, 电子与信息学报. doi: 10.3724/SP.J.1146.2007.00946
  • 加载中
  • 计量
    • 文章访问数:  526
    • HTML全文浏览量:  28
    • PDF下载量:  477
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-05-15
    • 修回日期:  2015-10-13
    • 刊出日期:  2016-02-19

    目录

      /

      返回文章
      返回

      官方微信,欢迎关注